Cargando…
Prediction of Preeclampsia and Intrauterine Growth Restriction: Development of Machine Learning Models on a Prospective Cohort
BACKGROUND: Preeclampsia and intrauterine growth restriction are placental dysfunction–related disorders (PDDs) that require a referral decision be made within a certain time period. An appropriate prediction model should be developed for these diseases. However, previous models did not demonstrate...
Autores principales: | Sufriyana, Herdiantri, Wu, Yu-Wei, Su, Emily Chia-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265111/ https://www.ncbi.nlm.nih.gov/pubmed/32348266 http://dx.doi.org/10.2196/15411 |
Ejemplares similares
-
Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia
por: Sufriyana, Herdiantri, et al.
Publicado: (2020) -
Questionnaire-free machine-learning method to predict depressive symptoms among community-dwelling older adults
por: Susanty, Sri, et al.
Publicado: (2023) -
Blood biomarkers representing maternal-fetal interface tissues used to predict early-and late-onset preeclampsia but not COVID-19 infection
por: Sufriyana, Herdiantri, et al.
Publicado: (2022) -
Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis
por: Sufriyana, Herdiantri, et al.
Publicado: (2020) -
Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
por: Taeidi, Elham, et al.
Publicado: (2023)