Cargando…
Protein exchange is reduced in calcium-independent epithelial junctions
Desmosomes are cell–cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hy...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265307/ https://www.ncbi.nlm.nih.gov/pubmed/32399559 http://dx.doi.org/10.1083/jcb.201906153 |
_version_ | 1783541105358274560 |
---|---|
author | Bartle, Emily I. Rao, Tejeshwar C. Beggs, Reena R. Dean, William F. Urner, Tara M. Kowalczyk, Andrew P. Mattheyses, Alexa L. |
author_facet | Bartle, Emily I. Rao, Tejeshwar C. Beggs, Reena R. Dean, William F. Urner, Tara M. Kowalczyk, Andrew P. Mattheyses, Alexa L. |
author_sort | Bartle, Emily I. |
collection | PubMed |
description | Desmosomes are cell–cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hypothesized to drive hyperadhesion, but how desmosome structure confers adhesive state is still elusive. We employed fluorescence polarization microscopy to show that cadherin order is not required for hyperadhesion induced by pharmacologic and genetic approaches. FRAP experiments in cells treated with the PKCα inhibitor Gö6976 revealed that cadherins, plakoglobin, and desmoplakin have significantly reduced exchange in and out of hyperadhesive desmosomes. To test whether this was a result of enhanced keratin association, we used the desmoplakin mutant S2849G, which conferred reduced protein exchange. We propose that inside-out regulation of protein exchange modulates adhesive function, whereby proteins are “locked in” to hyperadhesive desmosomes while protein exchange confers plasticity on calcium-dependent desmosomes, thereby providing rapid control of adhesion. |
format | Online Article Text |
id | pubmed-7265307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72653072020-12-01 Protein exchange is reduced in calcium-independent epithelial junctions Bartle, Emily I. Rao, Tejeshwar C. Beggs, Reena R. Dean, William F. Urner, Tara M. Kowalczyk, Andrew P. Mattheyses, Alexa L. J Cell Biol Article Desmosomes are cell–cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hypothesized to drive hyperadhesion, but how desmosome structure confers adhesive state is still elusive. We employed fluorescence polarization microscopy to show that cadherin order is not required for hyperadhesion induced by pharmacologic and genetic approaches. FRAP experiments in cells treated with the PKCα inhibitor Gö6976 revealed that cadherins, plakoglobin, and desmoplakin have significantly reduced exchange in and out of hyperadhesive desmosomes. To test whether this was a result of enhanced keratin association, we used the desmoplakin mutant S2849G, which conferred reduced protein exchange. We propose that inside-out regulation of protein exchange modulates adhesive function, whereby proteins are “locked in” to hyperadhesive desmosomes while protein exchange confers plasticity on calcium-dependent desmosomes, thereby providing rapid control of adhesion. Rockefeller University Press 2020-05-12 /pmc/articles/PMC7265307/ /pubmed/32399559 http://dx.doi.org/10.1083/jcb.201906153 Text en © 2020 Bartle et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Bartle, Emily I. Rao, Tejeshwar C. Beggs, Reena R. Dean, William F. Urner, Tara M. Kowalczyk, Andrew P. Mattheyses, Alexa L. Protein exchange is reduced in calcium-independent epithelial junctions |
title | Protein exchange is reduced in calcium-independent epithelial junctions |
title_full | Protein exchange is reduced in calcium-independent epithelial junctions |
title_fullStr | Protein exchange is reduced in calcium-independent epithelial junctions |
title_full_unstemmed | Protein exchange is reduced in calcium-independent epithelial junctions |
title_short | Protein exchange is reduced in calcium-independent epithelial junctions |
title_sort | protein exchange is reduced in calcium-independent epithelial junctions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265307/ https://www.ncbi.nlm.nih.gov/pubmed/32399559 http://dx.doi.org/10.1083/jcb.201906153 |
work_keys_str_mv | AT bartleemilyi proteinexchangeisreducedincalciumindependentepithelialjunctions AT raotejeshwarc proteinexchangeisreducedincalciumindependentepithelialjunctions AT beggsreenar proteinexchangeisreducedincalciumindependentepithelialjunctions AT deanwilliamf proteinexchangeisreducedincalciumindependentepithelialjunctions AT urnertaram proteinexchangeisreducedincalciumindependentepithelialjunctions AT kowalczykandrewp proteinexchangeisreducedincalciumindependentepithelialjunctions AT mattheysesalexal proteinexchangeisreducedincalciumindependentepithelialjunctions |