Cargando…

Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker, Catherine, Hayden, Matthew S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265575/
https://www.ncbi.nlm.nih.gov/pubmed/32528662
http://dx.doi.org/10.12688/f1000research.23185.2
Descripción
Sumario:The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research.  We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.