Cargando…
Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
PURPOSE: Tumor-infiltrating lymphocytes (TILs) and their spatial characterizations on whole-slide images (WSIs) of histopathology sections have become crucial in diagnosis, prognosis, and treatment response prediction for different cancers. However, fully automatic assessment of TILs on WSIs current...
Autores principales: | Lu, Zixiao, Xu, Siwen, Shao, Wei, Wu, Yi, Zhang, Jie, Han, Zhi, Feng, Qianjin, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265782/ https://www.ncbi.nlm.nih.gov/pubmed/32453636 http://dx.doi.org/10.1200/CCI.19.00126 |
Ejemplares similares
-
BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images
por: Lu, Zixiao, et al.
Publicado: (2021) -
Integrative analysis of histopathological images and chromatin accessibility data for estrogen receptor-positive breast cancer
por: Xu, Siwen, et al.
Publicado: (2020) -
Integrative multiomics-histopathology analysis for breast cancer classification
por: Ektefaie, Yasha, et al.
Publicado: (2021) -
Application of Deep Learning in Histopathology Images of Breast Cancer: A Review
por: Zhao, Yue, et al.
Publicado: (2022) -
Deep Learning Based Analysis of Histopathological Images of Breast Cancer
por: Xie, Juanying, et al.
Publicado: (2019)