Cargando…
Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome
PURPOSE: Personalized network inference on diverse clinical and in vitro model systems across cancer types can be used to delineate specific regulatory mechanisms, uncover drug targets and pathways, and develop individualized predictive models in cancer. METHODS: We developed TransPRECISE (personali...
Autores principales: | Bhattacharyya, Rupam, Ha, Min Jin, Liu, Qingzhi, Akbani, Rehan, Liang, Han, Baladandayuthapani, Veerabhadran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265783/ https://www.ncbi.nlm.nih.gov/pubmed/32374631 http://dx.doi.org/10.1200/CCI.19.00140 |
Ejemplares similares
-
Personalized Integrated Network Modeling of the Cancer Proteome Atlas
por: Ha, Min Jin, et al.
Publicado: (2018) -
Network-Based Matching of Patients and Targeted Therapies for Precision Oncology
por: Liu, Qingzhi, et al.
Publicado: (2020) -
BaySyn: Bayesian Evidence Synthesis for Multi-system Multiomic Integration
por: Bhattacharyya, Rupam, et al.
Publicado: (2023) -
iDINGO—integrative differential network analysis in genomics with Shiny application
por: Class, Caleb A, et al.
Publicado: (2018) -
Prognostic Gene Signature Identification Using Causal Structure Learning: Applications in Kidney Cancer
por: Ha, Min Jin, et al.
Publicado: (2015)