Cargando…

Global Alliance for Genomics and Health Meets Bioconductor: Toward Reproducible and Agile Cancer Genomics at Cloud Scale

PURPOSE: Institutional efforts toward the democratization of cloud-scale data and analysis methods for cancer genomics are proceeding rapidly. As part of this effort, we bridge two major bioinformatic initiatives: the Global Alliance for Genomics and Health (GA4GH) and Bioconductor. METHODS: We desc...

Descripción completa

Detalles Bibliográficos
Autores principales: Carey, Vincent J., Ramos, Marcel, Stubbs, Benjamin J., Gopaulakrishnan, Shweta, Oh, Sehyun, Turaga, Nitesh, Waldron, Levi, Morgan, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Clinical Oncology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265787/
https://www.ncbi.nlm.nih.gov/pubmed/32453635
http://dx.doi.org/10.1200/CCI.19.00111
Descripción
Sumario:PURPOSE: Institutional efforts toward the democratization of cloud-scale data and analysis methods for cancer genomics are proceeding rapidly. As part of this effort, we bridge two major bioinformatic initiatives: the Global Alliance for Genomics and Health (GA4GH) and Bioconductor. METHODS: We describe in detail a use case in pancancer transcriptomics conducted by blending implementations of the GA4GH Workflow Execution Services and Tool Registry Service concepts with the Bioconductor curatedTCGAData and BiocOncoTK packages. RESULTS: We carried out the analysis with a formally archived workflow and container at dockstore.org and a workspace and notebook at app.terra.bio. The analysis identified relationships between microsatellite instability and biomarkers of immune dysregulation at a finer level of granularity than previously reported. Our use of standard approaches to containerization and workflow programming allows this analysis to be replicated and extended. CONCLUSION: Experimental use of dockstore.org and app.terra.bio in concert with Bioconductor enabled novel statistical analysis of large genomic projects without the need for local supercomputing resources but involved challenges related to container design, script archiving, and unit testing. Best practices and cost/benefit metrics for the management and analysis of globally federated genomic data and annotation are evolving. The creation and execution of use cases like the one reported here will be helpful in the development and comparison of approaches to federated data/analysis systems in cancer genomics.