Cargando…

Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes

PURPOSE: The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases such as cancer opens opportunities for the formulation and development of computational imaging genomics methods that can link multiomics, imaging, and clinical data. METHODS: Here, we prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Gevaert, Olivier, Nabian, Mohsen, Bakr, Shaimaa, Everaert, Celine, Shinde, Jayendra, Manukyan, Artur, Liefeld, Ted, Tabor, Thorin, Xu, Jishu, Lupberger, Joachim, Haas, Brian J., Baumert, Thomas F., Hernaez, Mikel, Reich, Michael, Quintana, Francisco J., Uhlmann, Erik J., Krichevsky, Anna M., Mesirov, Jill P., Carey, Vincent, Pochet, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Clinical Oncology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265792/
https://www.ncbi.nlm.nih.gov/pubmed/32383980
http://dx.doi.org/10.1200/CCI.19.00125
_version_ 1783541190295027712
author Gevaert, Olivier
Nabian, Mohsen
Bakr, Shaimaa
Everaert, Celine
Shinde, Jayendra
Manukyan, Artur
Liefeld, Ted
Tabor, Thorin
Xu, Jishu
Lupberger, Joachim
Haas, Brian J.
Baumert, Thomas F.
Hernaez, Mikel
Reich, Michael
Quintana, Francisco J.
Uhlmann, Erik J.
Krichevsky, Anna M.
Mesirov, Jill P.
Carey, Vincent
Pochet, Nathalie
author_facet Gevaert, Olivier
Nabian, Mohsen
Bakr, Shaimaa
Everaert, Celine
Shinde, Jayendra
Manukyan, Artur
Liefeld, Ted
Tabor, Thorin
Xu, Jishu
Lupberger, Joachim
Haas, Brian J.
Baumert, Thomas F.
Hernaez, Mikel
Reich, Michael
Quintana, Francisco J.
Uhlmann, Erik J.
Krichevsky, Anna M.
Mesirov, Jill P.
Carey, Vincent
Pochet, Nathalie
author_sort Gevaert, Olivier
collection PubMed
description PURPOSE: The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases such as cancer opens opportunities for the formulation and development of computational imaging genomics methods that can link multiomics, imaging, and clinical data. METHODS: Here, we present the Imaging-AMARETTO algorithms and software tools to systematically interrogate regulatory networks derived from multiomics data within and across related patient studies for their relevance to radiography and histopathology imaging features predicting clinical outcomes. RESULTS: To demonstrate its utility, we applied Imaging-AMARETTO to integrate three patient studies of brain tumors, specifically, multiomics with radiography imaging data from The Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and low-grade glioma (LGG) cohorts and transcriptomics with histopathology imaging data from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort. Our results show that Imaging-AMARETTO recapitulates known key drivers of tumor-associated microglia and macrophage mechanisms, mediated by STAT3, AHR, and CCR2, and neurodevelopmental and stemness mechanisms, mediated by OLIG2. Imaging-AMARETTO provides interpretation of their underlying molecular mechanisms in light of imaging biomarkers of clinical outcomes and uncovers novel master drivers, THBS1 and MAP2, that establish relationships across these distinct mechanisms. CONCLUSION: Our network-based imaging genomics tools serve as hypothesis generators that facilitate the interrogation of known and uncovering of novel hypotheses for follow-up with experimental validation studies. We anticipate that our Imaging-AMARETTO imaging genomics tools will be useful to the community of biomedical researchers for applications to similar studies of cancer and other complex diseases with available multiomics, imaging, and clinical data.
format Online
Article
Text
id pubmed-7265792
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society of Clinical Oncology
record_format MEDLINE/PubMed
spelling pubmed-72657922021-05-08 Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes Gevaert, Olivier Nabian, Mohsen Bakr, Shaimaa Everaert, Celine Shinde, Jayendra Manukyan, Artur Liefeld, Ted Tabor, Thorin Xu, Jishu Lupberger, Joachim Haas, Brian J. Baumert, Thomas F. Hernaez, Mikel Reich, Michael Quintana, Francisco J. Uhlmann, Erik J. Krichevsky, Anna M. Mesirov, Jill P. Carey, Vincent Pochet, Nathalie JCO Clin Cancer Inform ORIGINAL REPORTS PURPOSE: The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases such as cancer opens opportunities for the formulation and development of computational imaging genomics methods that can link multiomics, imaging, and clinical data. METHODS: Here, we present the Imaging-AMARETTO algorithms and software tools to systematically interrogate regulatory networks derived from multiomics data within and across related patient studies for their relevance to radiography and histopathology imaging features predicting clinical outcomes. RESULTS: To demonstrate its utility, we applied Imaging-AMARETTO to integrate three patient studies of brain tumors, specifically, multiomics with radiography imaging data from The Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and low-grade glioma (LGG) cohorts and transcriptomics with histopathology imaging data from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort. Our results show that Imaging-AMARETTO recapitulates known key drivers of tumor-associated microglia and macrophage mechanisms, mediated by STAT3, AHR, and CCR2, and neurodevelopmental and stemness mechanisms, mediated by OLIG2. Imaging-AMARETTO provides interpretation of their underlying molecular mechanisms in light of imaging biomarkers of clinical outcomes and uncovers novel master drivers, THBS1 and MAP2, that establish relationships across these distinct mechanisms. CONCLUSION: Our network-based imaging genomics tools serve as hypothesis generators that facilitate the interrogation of known and uncovering of novel hypotheses for follow-up with experimental validation studies. We anticipate that our Imaging-AMARETTO imaging genomics tools will be useful to the community of biomedical researchers for applications to similar studies of cancer and other complex diseases with available multiomics, imaging, and clinical data. American Society of Clinical Oncology 2020-05-08 /pmc/articles/PMC7265792/ /pubmed/32383980 http://dx.doi.org/10.1200/CCI.19.00125 Text en © 2020 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/ Licensed under the Creative Commons Attribution 4.0 License: https://creativecommons.org/licenses/by/4.0/
spellingShingle ORIGINAL REPORTS
Gevaert, Olivier
Nabian, Mohsen
Bakr, Shaimaa
Everaert, Celine
Shinde, Jayendra
Manukyan, Artur
Liefeld, Ted
Tabor, Thorin
Xu, Jishu
Lupberger, Joachim
Haas, Brian J.
Baumert, Thomas F.
Hernaez, Mikel
Reich, Michael
Quintana, Francisco J.
Uhlmann, Erik J.
Krichevsky, Anna M.
Mesirov, Jill P.
Carey, Vincent
Pochet, Nathalie
Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title_full Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title_fullStr Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title_full_unstemmed Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title_short Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes
title_sort imaging-amaretto: an imaging genomics software tool to interrogate multiomics networks for relevance to radiography and histopathology imaging biomarkers of clinical outcomes
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265792/
https://www.ncbi.nlm.nih.gov/pubmed/32383980
http://dx.doi.org/10.1200/CCI.19.00125
work_keys_str_mv AT gevaertolivier imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT nabianmohsen imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT bakrshaimaa imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT everaertceline imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT shindejayendra imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT manukyanartur imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT liefeldted imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT taborthorin imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT xujishu imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT lupbergerjoachim imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT haasbrianj imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT baumertthomasf imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT hernaezmikel imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT reichmichael imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT quintanafranciscoj imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT uhlmannerikj imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT krichevskyannam imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT mesirovjillp imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT careyvincent imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes
AT pochetnathalie imagingamarettoanimaginggenomicssoftwaretooltointerrogatemultiomicsnetworksforrelevancetoradiographyandhistopathologyimagingbiomarkersofclinicaloutcomes