Cargando…
Efficient and Accurate Extracting of Unstructured EHRs on Cancer Therapy Responses for the Development of RECIST Natural Language Processing Tools: Part I, the Corpus
PURPOSE: Electronic health records (EHRs) are created primarily for nonresearch purposes; thus, the amounts of data are enormous, and the data are crude, heterogeneous, incomplete, and largely unstructured, presenting challenges to effective analyses for timely, reliable results. Particularly, resea...
Autores principales: | Li, Yalun, Luo, Yung-Hung, Wampfler, Jason A., Rubinstein, Samuel M., Tiryaki, Firat, Ashok, Kumar, Warner, Jeremy L., Xu, Hua, Yang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265793/ https://www.ncbi.nlm.nih.gov/pubmed/32364754 http://dx.doi.org/10.1200/CCI.19.00147 |
Ejemplares similares
-
Network analysis of unstructured EHR data for clinical research
por: Bauer-Mehren, Anna, et al.
Publicado: ( 201) -
Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing
por: Wulff, Antje, et al.
Publicado: (2020) -
Predictive structured–unstructured interactions in EHR models: A case study of suicide prediction
por: Bayramli, Ilkin, et al.
Publicado: (2022) -
Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method
por: Chiu, Chih-Chou, et al.
Publicado: (2023) -
RECIST rules
por: Sohaib, Aslam
Publicado: (2012)