Cargando…
Interactive Exploration of Longitudinal Cancer Patient Histories Extracted From Clinical Text
PURPOSE: Retrospective cancer research requires identification of patients matching both categorical and temporal inclusion criteria, often on the basis of factors exclusively available in clinical notes. Although natural language processing approaches for inferring higher-level concepts have shown...
Autores principales: | Yuan, Zhou, Finan, Sean, Warner, Jeremy, Savova, Guergana, Hochheiser, Harry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265796/ https://www.ncbi.nlm.nih.gov/pubmed/32383981 http://dx.doi.org/10.1200/CCI.19.00115 |
Ejemplares similares
-
DeepPhe-CR: Natural Language Processing Software Services for Cancer Registrar Case Abstraction
por: Hochheiser, Harry, et al.
Publicado: (2023) -
An information model for computable cancer phenotypes
por: Hochheiser, Harry, et al.
Publicado: (2016) -
Discovering body site and severity modifiers in clinical texts
por: Dligach, Dmitriy, et al.
Publicado: (2014) -
Improved de-identification of physician notes through integrative modeling of both public and private medical text
por: McMurry, Andrew J, et al.
Publicado: (2013) -
Clinical Natural Language Processing in languages other than English: opportunities and challenges
por: Névéol, Aurélie, et al.
Publicado: (2018)