Cargando…
GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of d...
Autores principales: | Wang, Lei, You, Zhu-Hong, Li, Yang-Ming, Zheng, Kai, Huang, Yu-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266350/ https://www.ncbi.nlm.nih.gov/pubmed/32433655 http://dx.doi.org/10.1371/journal.pcbi.1007568 |
Ejemplares similares
-
CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
por: Ma, Zhihao, et al.
Publicado: (2021) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network
por: Bian, Chen, et al.
Publicado: (2021) -
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022)