Cargando…
Reducing Opioid Prescriptions by Identifying Responders on Topical Analgesic Treatment Using an Individualized Medicine and Predictive Analytics Approach
PURPOSE: Chronic pain is a life changing condition, and non-opioid treatments have been lately introduced to overcome the addictive nature of opioid therapies and their side effects. In the present study, we explore the potential of machine learning methods to discriminate chronic pain patients into...
Autores principales: | Gudin, Jeffrey, Mavroudi, Seferina, Korfiati, Aigli, Theofilatos, Konstantinos, Dietze, Derek, Hurwitz, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266406/ https://www.ncbi.nlm.nih.gov/pubmed/32547186 http://dx.doi.org/10.2147/JPR.S246503 |
Ejemplares similares
-
Omics-CNN: A comprehensive pipeline for predictive analytics in quantitative omics using one-dimensional convolutional neural networks
por: Zompola, Anastasia, et al.
Publicado: (2023) -
MEvA-X: a hybrid multiobjective evolutionary tool using an XGBoost classifier for biomarkers discovery on biomedical datasets
por: Panagiotopoulos, Konstantinos, et al.
Publicado: (2023) -
Discovery of stroke-related blood biomarkers from gene expression network models
por: Theofilatos, Konstantinos, et al.
Publicado: (2019) -
Changes in pain and concurrent pain medication use following compounded topical analgesic treatment for chronic pain: 3- and 6-month follow-up results from the prospective, observational Optimizing Patient Experience and Response to Topical Analgesics study
por: Gudin, Jeffrey A, et al.
Publicado: (2017) -
Improvement of Pain and Function After Use of a Topical Pain Relieving Patch: Results of the RELIEF Study
por: Gudin, Jeffrey A, et al.
Publicado: (2020)