Cargando…
Extracting Conditionally Heteroskedastic Components using Independent Component Analysis
In the independent component model, the multivariate data are assumed to be a mixture of mutually independent latent components. The independent component analysis (ICA) then aims at estimating these latent components. In this article, we study an ICA method which combines the use of linear and quad...
Autores principales: | Miettinen, Jari, Matilainen, Markus, Nordhausen, Klaus, Taskinen, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266430/ https://www.ncbi.nlm.nih.gov/pubmed/32508370 http://dx.doi.org/10.1111/jtsa.12505 |
Ejemplares similares
-
A review of second‐order blind identification methods
por: Pan, Yan, et al.
Publicado: (2021) -
Genomic Prediction Accounting for Residual Heteroskedasticity
por: Ou, Zhining, et al.
Publicado: (2015) -
Inference about multiplicative heteroskedastic components of variance in a mixed linear Gaussian model with an application to beef cattle breeding
por: San Cristobal, M, et al.
Publicado: (1993) -
Modern nonparametric, robust and multivariate methods: festschrift in honour of Hannu Oja
por: Nordhausen, Klaus, et al.
Publicado: (2015) -
Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
por: Kouřil, Štěpán, et al.
Publicado: (2023)