Cargando…
Recommendations for Evolving Relational Databases
Relational databases play a central role in many information systems. Their schemas contain structural and behavioral entity descriptions. Databases must continuously be adapted to new requirements of a world in constant change while: (1) relational database management systems (RDBMS) do not allow i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266448/ http://dx.doi.org/10.1007/978-3-030-49435-3_31 |
Sumario: | Relational databases play a central role in many information systems. Their schemas contain structural and behavioral entity descriptions. Databases must continuously be adapted to new requirements of a world in constant change while: (1) relational database management systems (RDBMS) do not allow inconsistencies in the schema; (2) stored procedure bodies are not meta-described in RDBMS such as PostgreSQL that consider their bodies as plain text. As a consequence, evaluating the impact of an evolution of the database schema is cumbersome, being essentially manual. We present a semi-automatic approach based on recommendations that can be compiled into a SQL patch fulfilling RDBMS constraints. To support recommendations, we designed a meta-model for relational databases easing computation of change impact. We performed an experiment to validate the approach by reproducing a real evolution on a database. The results of our experiment show that our approach can set the database in the same state as the one produced by the manual evolution in 75% less time. |
---|