Cargando…

Recommendations for Evolving Relational Databases

Relational databases play a central role in many information systems. Their schemas contain structural and behavioral entity descriptions. Databases must continuously be adapted to new requirements of a world in constant change while: (1) relational database management systems (RDBMS) do not allow i...

Descripción completa

Detalles Bibliográficos
Autores principales: Delplanque, Julien, Etien, Anne, Anquetil, Nicolas, Ducasse, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266448/
http://dx.doi.org/10.1007/978-3-030-49435-3_31
Descripción
Sumario:Relational databases play a central role in many information systems. Their schemas contain structural and behavioral entity descriptions. Databases must continuously be adapted to new requirements of a world in constant change while: (1) relational database management systems (RDBMS) do not allow inconsistencies in the schema; (2) stored procedure bodies are not meta-described in RDBMS such as PostgreSQL that consider their bodies as plain text. As a consequence, evaluating the impact of an evolution of the database schema is cumbersome, being essentially manual. We present a semi-automatic approach based on recommendations that can be compiled into a SQL patch fulfilling RDBMS constraints. To support recommendations, we designed a meta-model for relational databases easing computation of change impact. We performed an experiment to validate the approach by reproducing a real evolution on a database. The results of our experiment show that our approach can set the database in the same state as the one produced by the manual evolution in 75% less time.