Cargando…
An Approach for Process Model Extraction by Multi-grained Text Classification
Process model extraction (PME) is a recently emerged interdiscipline between natural language processing (NLP) and business process management (BPM), which aims to extract process models from textual descriptions. Previous process extractors heavily depend on manual features and ignore the potential...
Autores principales: | Qian, Chen, Wen, Lijie, Kumar, Akhil, Lin, Leilei, Lin, Li, Zong, Zan, Li, Shu’ang, Wang, Jianmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266458/ http://dx.doi.org/10.1007/978-3-030-49435-3_17 |
Ejemplares similares
-
Research on Multi-label Text Classification Method Based on tALBERT-CNN
por: Liu, Wenfu, et al.
Publicado: (2021) -
Investigating Multi-Level Semantic Extraction with Squash Capsules for Short Text Classification
por: Li, Jing, et al.
Publicado: (2022) -
Exploring Misclassification Information for Fine-Grained Image Classification
por: Wang, Da-Han, et al.
Publicado: (2021) -
Fine-grained classification based on multi-scale pyramid convolution networks
por: Wang, Gaihua, et al.
Publicado: (2021) -
Arabic text classification: the need for multi-labeling systems
por: El Rifai, Hozayfa, et al.
Publicado: (2021)