Cargando…
DeepAlign: Alignment-Based Process Anomaly Correction Using Recurrent Neural Networks
In this paper, we propose DeepAlign, a novel approach to multi-perspective process anomaly correction, based on recurrent neural networks and bidirectional beam search. At the core of the DeepAlign algorithm are two recurrent neural networks trained to predict the next event. One is reading sequence...
Autores principales: | Nolle, Timo, Seeliger, Alexander, Thoma, Nils, Mühlhäuser, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266459/ http://dx.doi.org/10.1007/978-3-030-49435-3_20 |
Ejemplares similares
-
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
Use artificial neural network to align biological ontologies
por: Huang, Jingshan, et al.
Publicado: (2008) -
Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex
por: Kuzovkin, Ilya, et al.
Publicado: (2018) -
Detecting distant-homology protein structures by aligning deep neural-network based contact maps
por: Zheng, Wei, et al.
Publicado: (2019) -
GraphAlignment: Bayesian pairwise alignment of biological networks
por: Kolář, Michal, et al.
Publicado: (2012)