Cargando…
Online Reinforcement Learning for Self-adaptive Information Systems
A self-adaptive information system is capable of maintaining its quality requirements in the presence of dynamic environment changes. To develop a self-adaptive information system, information system engineers have to create self-adaptation logic that encodes when and how the system should adapt its...
Autores principales: | Palm, Alexander, Metzger, Andreas, Pohl, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266468/ http://dx.doi.org/10.1007/978-3-030-49435-3_11 |
Ejemplares similares
-
Embodied Synaptic Plasticity With Online Reinforcement Learning
por: Kaiser, Jacques, et al.
Publicado: (2019) -
Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation
por: Xiang, Guofei, et al.
Publicado: (2023) -
Reinforcement Learning with Side Information for the Uncertainties
por: Yang, Janghoon
Publicado: (2022) -
Artificial Development by Reinforcement Learning Can Benefit From Multiple Motivations
por: Palm, Günther, et al.
Publicado: (2019) -
Switching to online: Testing the validity of supervised remote testing for online reinforcement learning experiments
por: Weydmann, Gibson, et al.
Publicado: (2022)