Cargando…
Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies
Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topogra...
Autores principales: | Haxby, James V, Guntupalli, J Swaroop, Nastase, Samuel A, Feilong, Ma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266639/ https://www.ncbi.nlm.nih.gov/pubmed/32484439 http://dx.doi.org/10.7554/eLife.56601 |
Ejemplares similares
-
Hybrid hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity
por: Busch, Erica L., et al.
Publicado: (2021) -
The neural basis of intelligence in fine-grained cortical topographies
por: Feilong, Ma, et al.
Publicado: (2021) -
Cross-movie prediction of individualized functional topography
por: Jiahui, Guo, et al.
Publicado: (2023) -
A computational model of shared fine-scale structure in the human connectome
por: Guntupalli, J. Swaroop, et al.
Publicado: (2018) -
Modeling Semantic Encoding in a Common Neural Representational Space
por: Van Uden, Cara E., et al.
Publicado: (2018)