Cargando…
Is MOOC Learning Different for Dropouts? A Visually-Driven, Multi-granularity Explanatory ML Approach
Millions of people have enrolled and enrol (especially in the Covid-19 pandemic world) in MOOCs. However, the retention rate of learners is notoriously low. The majority of the research work on this issue focuses on predicting the dropout rate, but very few use explainable learning patterns as part...
Autores principales: | Alamri, Ahmed, Sun, Zhongtian, Cristea, Alexandra I., Senthilnathan, Gautham, Shi, Lei, Stewart, Craig |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266654/ http://dx.doi.org/10.1007/978-3-030-49663-0_42 |
Ejemplares similares
-
Take a MOOC and then drop: A systematic review of MOOC engagement pattern and dropout factor
por: Huang, Hao, et al.
Publicado: (2023) -
To MOOC or Not to MOOC
por: Porter, Sarah
Publicado: (2015) -
Problem characterization for visual analytics in MOOC learner's support monitoring: A case of Malaysian MOOC
por: Asli, Mohammad Fadhli, et al.
Publicado: (2020) -
To MOOC or not to MOOC : how can online learning help to build the future of higher education? /
por: Porter, Sarah
Publicado: (2015) -
Designing an antimatter MOOC
por: Al-Kharusi, Ahmed
Publicado: (2021)