Cargando…

Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice

Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological d...

Descripción completa

Detalles Bibliográficos
Autores principales: Emmerzaal, Tim L., Preston, Graeme, Geenen, Bram, Verweij, Vivienne, Wiesmann, Maximilian, Vasileiou, Elisavet, Grüter, Femke, de Groot, Corné, Schoorl, Jeroen, de Veer, Renske, Roelofs, Monica, Arts, Martijn, Hendriksen, Yara, Klimars, Eva, Donti, Taraka R., Graham, Brett H., Morava, Eva, Rodenburg, Richard J., Kozicz, Tamas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266820/
https://www.ncbi.nlm.nih.gov/pubmed/32488052
http://dx.doi.org/10.1038/s41398-020-0858-y
_version_ 1783541378912878592
author Emmerzaal, Tim L.
Preston, Graeme
Geenen, Bram
Verweij, Vivienne
Wiesmann, Maximilian
Vasileiou, Elisavet
Grüter, Femke
de Groot, Corné
Schoorl, Jeroen
de Veer, Renske
Roelofs, Monica
Arts, Martijn
Hendriksen, Yara
Klimars, Eva
Donti, Taraka R.
Graham, Brett H.
Morava, Eva
Rodenburg, Richard J.
Kozicz, Tamas
author_facet Emmerzaal, Tim L.
Preston, Graeme
Geenen, Bram
Verweij, Vivienne
Wiesmann, Maximilian
Vasileiou, Elisavet
Grüter, Femke
de Groot, Corné
Schoorl, Jeroen
de Veer, Renske
Roelofs, Monica
Arts, Martijn
Hendriksen, Yara
Klimars, Eva
Donti, Taraka R.
Graham, Brett H.
Morava, Eva
Rodenburg, Richard J.
Kozicz, Tamas
author_sort Emmerzaal, Tim L.
collection PubMed
description Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4(GT/GT) mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4(GT/GT) mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4(GT/GT) from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4(GT/GT) mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.
format Online
Article
Text
id pubmed-7266820
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72668202020-06-16 Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice Emmerzaal, Tim L. Preston, Graeme Geenen, Bram Verweij, Vivienne Wiesmann, Maximilian Vasileiou, Elisavet Grüter, Femke de Groot, Corné Schoorl, Jeroen de Veer, Renske Roelofs, Monica Arts, Martijn Hendriksen, Yara Klimars, Eva Donti, Taraka R. Graham, Brett H. Morava, Eva Rodenburg, Richard J. Kozicz, Tamas Transl Psychiatry Article Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4(GT/GT) mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4(GT/GT) mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4(GT/GT) from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4(GT/GT) mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype. Nature Publishing Group UK 2020-06-01 /pmc/articles/PMC7266820/ /pubmed/32488052 http://dx.doi.org/10.1038/s41398-020-0858-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Emmerzaal, Tim L.
Preston, Graeme
Geenen, Bram
Verweij, Vivienne
Wiesmann, Maximilian
Vasileiou, Elisavet
Grüter, Femke
de Groot, Corné
Schoorl, Jeroen
de Veer, Renske
Roelofs, Monica
Arts, Martijn
Hendriksen, Yara
Klimars, Eva
Donti, Taraka R.
Graham, Brett H.
Morava, Eva
Rodenburg, Richard J.
Kozicz, Tamas
Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title_full Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title_fullStr Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title_full_unstemmed Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title_short Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
title_sort impaired mitochondrial complex i function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266820/
https://www.ncbi.nlm.nih.gov/pubmed/32488052
http://dx.doi.org/10.1038/s41398-020-0858-y
work_keys_str_mv AT emmerzaaltiml impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT prestongraeme impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT geenenbram impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT verweijvivienne impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT wiesmannmaximilian impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT vasileiouelisavet impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT gruterfemke impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT degrootcorne impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT schoorljeroen impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT deveerrenske impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT roelofsmonica impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT artsmartijn impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT hendriksenyara impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT klimarseva impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT dontitarakar impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT grahambretth impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT moravaeva impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT rodenburgrichardj impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice
AT kozicztamas impairedmitochondrialcomplexifunctionasacandidatedriverinthebiologicalstressresponseandaconcomitantstressinducedbrainmetabolicreprogramminginmalemice