Cargando…
Maslinic acid induces anticancer effects in human neuroblastoma cells mediated via apoptosis induction and caspase activation, inhibition of cell migration and invasion and targeting MAPK/ERK signaling pathway
Maslinic acid is an active member of pentacyclic triterpenes predominantly found in dietary plants including hawthorn berries and olive fruit skins. It has been reported to show immense pharmacological and biological importance including anticancer property. This research was initiated to explore th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266924/ https://www.ncbi.nlm.nih.gov/pubmed/32488691 http://dx.doi.org/10.1186/s13568-020-01035-1 |
Sumario: | Maslinic acid is an active member of pentacyclic triterpenes predominantly found in dietary plants including hawthorn berries and olive fruit skins. It has been reported to show immense pharmacological and biological importance including anticancer property. This research was initiated to explore the anticancer potential of maslinic acid against human neuroblastoma. The effects of maslinic acid on cellular apoptosis, ROS generation, cell migration and invasion, caspase activation and targeting MAPK/ERK signaling pathway were investigated. The proliferation percentage was calculated by performing of MTT assay. AO/EB and annexin V/PI staining assays along with western blotting were used to monitor the apoptosis and expressions of apoptosis connected proteins. Spectrofluorometry was used for ROS monitoring. To assess the anti-metastatic effects of maslinic acid on neuroblastoma cells, transwell chambers assays for migration as well as invasion were executed. Western blotting was implemented to establish the expressions of MAPK/ERK signaling pathway connected proteins. Results evidenced remarkable anticancer potential of maslinic acid against human neuroblastoma. It induced dose as well as time reliant anti-proliferative effects against SHSY-5Y cells selectively. The underlying mechanism of cancer suppressive effects of maslinic acid was found to mediate via caspase-dependent apoptosis. Further, ROS production amplified terrifically with exposure of SHSY-5Y to higher maslinic acid doses. Cell migration and invasion in SHSY-5Y cells were both reduced remarkably by maslinic acid. Finally, the activity of proteins associated with MAPK/ERK signaling pathway was found to be significantly reduced with increasing maslinic acid doses. In conclusion, it was observed that maslinic acid possesses a great anti-neuroblastoma potential and could be considered for its chemotherapy provided further investigations are recommended. |
---|