Cargando…

STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers

The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1. To systematically probe genetic vulnerabilities in the absence of STAG2,...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Lelij, Petra, Newman, Joseph A, Lieb, Simone, Jude, Julian, Katis, Vittorio, Hoffmann, Thomas, Hinterndorfer, Matthias, Bader, Gerd, Kraut, Norbert, Pearson, Mark A, Peters, Jan-Michael, Zuber, Johannes, Gileadi, Opher, Petronczki, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266993/
https://www.ncbi.nlm.nih.gov/pubmed/32467316
http://dx.doi.org/10.26508/lsa.202000725
_version_ 1783541411433414656
author van der Lelij, Petra
Newman, Joseph A
Lieb, Simone
Jude, Julian
Katis, Vittorio
Hoffmann, Thomas
Hinterndorfer, Matthias
Bader, Gerd
Kraut, Norbert
Pearson, Mark A
Peters, Jan-Michael
Zuber, Johannes
Gileadi, Opher
Petronczki, Mark
author_facet van der Lelij, Petra
Newman, Joseph A
Lieb, Simone
Jude, Julian
Katis, Vittorio
Hoffmann, Thomas
Hinterndorfer, Matthias
Bader, Gerd
Kraut, Norbert
Pearson, Mark A
Peters, Jan-Michael
Zuber, Johannes
Gileadi, Opher
Petronczki, Mark
author_sort van der Lelij, Petra
collection PubMed
description The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1. To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2–wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors.
format Online
Article
Text
id pubmed-7266993
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-72669932020-06-09 STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers van der Lelij, Petra Newman, Joseph A Lieb, Simone Jude, Julian Katis, Vittorio Hoffmann, Thomas Hinterndorfer, Matthias Bader, Gerd Kraut, Norbert Pearson, Mark A Peters, Jan-Michael Zuber, Johannes Gileadi, Opher Petronczki, Mark Life Sci Alliance Research Articles The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1. To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2–wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors. Life Science Alliance LLC 2020-05-28 /pmc/articles/PMC7266993/ /pubmed/32467316 http://dx.doi.org/10.26508/lsa.202000725 Text en © 2020 van der Lelij et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Articles
van der Lelij, Petra
Newman, Joseph A
Lieb, Simone
Jude, Julian
Katis, Vittorio
Hoffmann, Thomas
Hinterndorfer, Matthias
Bader, Gerd
Kraut, Norbert
Pearson, Mark A
Peters, Jan-Michael
Zuber, Johannes
Gileadi, Opher
Petronczki, Mark
STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title_full STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title_fullStr STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title_full_unstemmed STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title_short STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers
title_sort stag1 vulnerabilities for exploiting cohesin synthetic lethality in stag2-deficient cancers
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266993/
https://www.ncbi.nlm.nih.gov/pubmed/32467316
http://dx.doi.org/10.26508/lsa.202000725
work_keys_str_mv AT vanderlelijpetra stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT newmanjosepha stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT liebsimone stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT judejulian stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT katisvittorio stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT hoffmannthomas stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT hinterndorfermatthias stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT badergerd stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT krautnorbert stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT pearsonmarka stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT petersjanmichael stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT zuberjohannes stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT gileadiopher stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers
AT petronczkimark stag1vulnerabilitiesforexploitingcohesinsyntheticlethalityinstag2deficientcancers