Cargando…
Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems
Modern chemistry seems to be unlimited in molecular size and elemental composition. Metal‐organic frameworks or biological macromolecules involve complex architectures and a large variety of elements. Yet, a general and broadly applicable theoretical method to describe the structures and interaction...
Autores principales: | Spicher, Sebastian, Grimme, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267649/ https://www.ncbi.nlm.nih.gov/pubmed/32343883 http://dx.doi.org/10.1002/anie.202004239 |
Ejemplares similares
-
Robustness of Local
Predictions in Atomistic Machine
Learning Models
por: Chong, Sanggyu, et al.
Publicado: (2023) -
First-Principle and Atomistic Modelling in Materials Science
por: Posselt, Matthias
Publicado: (2021) -
Physically informed artificial neural networks for atomistic modeling of materials
por: Pun, G. P. Purja, et al.
Publicado: (2019) -
Organometallics
por: Bochmann, Manfred
Publicado: (1994) -
The Role of Packing, Dispersion, Electrostatics, and Solvation in High‐Affinity Complexes of Cucurbit[n]urils with Uncharged Polar Guests
por: Grimm, Laura M., et al.
Publicado: (2022)