Cargando…

Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes

OBJECTIVE: Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses....

Descripción completa

Detalles Bibliográficos
Autores principales: Russo, Lucia, Muir, Lindsey, Geletka, Lynn, Delproposto, Jennifer, Baker, Nicki, Flesher, Carmen, O'Rourke, Robert, Lumeng, Carey N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267735/
https://www.ncbi.nlm.nih.gov/pubmed/32229247
http://dx.doi.org/10.1016/j.molmet.2020.100983
_version_ 1783541466280230912
author Russo, Lucia
Muir, Lindsey
Geletka, Lynn
Delproposto, Jennifer
Baker, Nicki
Flesher, Carmen
O'Rourke, Robert
Lumeng, Carey N.
author_facet Russo, Lucia
Muir, Lindsey
Geletka, Lynn
Delproposto, Jennifer
Baker, Nicki
Flesher, Carmen
O'Rourke, Robert
Lumeng, Carey N.
author_sort Russo, Lucia
collection PubMed
description OBJECTIVE: Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood. Cholesterol 25-Hydroxylase (CH25H) converts cholesterol into 25-Hydroxycholesterol (25-HC), an oxysterol that modulates immune responses. Using human and murine models, we investigated the role of CH25H in metabolic inflammation. METHODS: We performed transcriptomic (RNASeq) analysis on the human whole AT biopsies and sorted ATMs from obese non-diabetic (NDM) and obese diabetic (DM) subjects to inquire if CH25H was increased in DM. We challenged mice lacking Ch25h with a high-fat diet (HFD) to characterize their metabolic and immunologic profiling. Ch25h KO mice and human adipose tissue biopsies from NDM and DM subjects were analyzed. LC-MS was conducted to measure 25-HC level in AT. In vitro analysis permitted us to investigate the effect of 25-HC on cytokine expression. RESULTS: In our RNASeq analysis of human visceral and subcutaneous biopsies, gene pathways related to inflammation were increased in obese DM vs. non-DM subjects that included CH25H. CH25H was enriched in the stromal vascular fraction of human adipose tissue and highly expressed in CD206(+) human ATMs by flow cytometry analysis. We measured the levels of the oxysterols, 25-HC and 7α25diHC, in human visceral adipose tissue samples and showed a correlation between BMI and 25-HC. Using mouse models of diet-induced obesity (DIO), we found that HFD-induced Ch25h expression in eWAT and increased levels of 25-HC in AT. On HFD, Ch25h KO mice became obese but exhibited reduced plasma insulin levels, improved insulin action, and decreased ectopic lipid deposit. Improved insulin sensitivity in Ch25h KO mice was due to attenuation of CD11c(+) adipose tissue macrophage infiltration in eWAT. Finally, by testing AT explants, bone marrow-derived macrophages (BMDMs) and SVF cells from Ch25h deficient mice, we observed that 25-HC is required for the expression of pro-inflammatory genes. 25-HC was also able to induce inflammatory genes in preadipocytes. CONCLUSIONS: Our data suggest a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity. In response to obesogenic stimuli, CH25H/25-HC could exert a pro-inflammatory role.
format Online
Article
Text
id pubmed-7267735
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-72677352020-06-07 Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes Russo, Lucia Muir, Lindsey Geletka, Lynn Delproposto, Jennifer Baker, Nicki Flesher, Carmen O'Rourke, Robert Lumeng, Carey N. Mol Metab Original Article OBJECTIVE: Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood. Cholesterol 25-Hydroxylase (CH25H) converts cholesterol into 25-Hydroxycholesterol (25-HC), an oxysterol that modulates immune responses. Using human and murine models, we investigated the role of CH25H in metabolic inflammation. METHODS: We performed transcriptomic (RNASeq) analysis on the human whole AT biopsies and sorted ATMs from obese non-diabetic (NDM) and obese diabetic (DM) subjects to inquire if CH25H was increased in DM. We challenged mice lacking Ch25h with a high-fat diet (HFD) to characterize their metabolic and immunologic profiling. Ch25h KO mice and human adipose tissue biopsies from NDM and DM subjects were analyzed. LC-MS was conducted to measure 25-HC level in AT. In vitro analysis permitted us to investigate the effect of 25-HC on cytokine expression. RESULTS: In our RNASeq analysis of human visceral and subcutaneous biopsies, gene pathways related to inflammation were increased in obese DM vs. non-DM subjects that included CH25H. CH25H was enriched in the stromal vascular fraction of human adipose tissue and highly expressed in CD206(+) human ATMs by flow cytometry analysis. We measured the levels of the oxysterols, 25-HC and 7α25diHC, in human visceral adipose tissue samples and showed a correlation between BMI and 25-HC. Using mouse models of diet-induced obesity (DIO), we found that HFD-induced Ch25h expression in eWAT and increased levels of 25-HC in AT. On HFD, Ch25h KO mice became obese but exhibited reduced plasma insulin levels, improved insulin action, and decreased ectopic lipid deposit. Improved insulin sensitivity in Ch25h KO mice was due to attenuation of CD11c(+) adipose tissue macrophage infiltration in eWAT. Finally, by testing AT explants, bone marrow-derived macrophages (BMDMs) and SVF cells from Ch25h deficient mice, we observed that 25-HC is required for the expression of pro-inflammatory genes. 25-HC was also able to induce inflammatory genes in preadipocytes. CONCLUSIONS: Our data suggest a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity. In response to obesogenic stimuli, CH25H/25-HC could exert a pro-inflammatory role. Elsevier 2020-03-27 /pmc/articles/PMC7267735/ /pubmed/32229247 http://dx.doi.org/10.1016/j.molmet.2020.100983 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Russo, Lucia
Muir, Lindsey
Geletka, Lynn
Delproposto, Jennifer
Baker, Nicki
Flesher, Carmen
O'Rourke, Robert
Lumeng, Carey N.
Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title_full Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title_fullStr Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title_full_unstemmed Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title_short Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes
title_sort cholesterol 25-hydroxylase (ch25h) as a promoter of adipose tissue inflammation in obesity and diabetes
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267735/
https://www.ncbi.nlm.nih.gov/pubmed/32229247
http://dx.doi.org/10.1016/j.molmet.2020.100983
work_keys_str_mv AT russolucia cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT muirlindsey cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT geletkalynn cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT delpropostojennifer cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT bakernicki cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT fleshercarmen cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT orourkerobert cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes
AT lumengcareyn cholesterol25hydroxylasech25hasapromoterofadiposetissueinflammationinobesityanddiabetes