Cargando…

nanoTRON: a Picasso module for MLP-based classification of super-resolution data

MOTIVATION: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spat...

Descripción completa

Detalles Bibliográficos
Autores principales: Auer, Alexander, Strauss, Maximilian T, Strauss, Sebastian, Jungmann, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267816/
https://www.ncbi.nlm.nih.gov/pubmed/32145010
http://dx.doi.org/10.1093/bioinformatics/btaa154
_version_ 1783541484107071488
author Auer, Alexander
Strauss, Maximilian T
Strauss, Sebastian
Jungmann, Ralf
author_facet Auer, Alexander
Strauss, Maximilian T
Strauss, Sebastian
Jungmann, Ralf
author_sort Auer, Alexander
collection PubMed
description MOTIVATION: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually needs initial classification, which is up to now often performed manually. RESULTS: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic user interface. AVAILABILITY AND IMPLEMENTATION: nanoTRON is written in Python and freely available under the MIT license as a part of the software collection Picasso on GitHub (http://www.github.com/jungmannlab/picasso). All raw data can be obtained from the authors upon reasonable request. CONTACT: jungmann@biochem.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-7267816
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-72678162020-06-09 nanoTRON: a Picasso module for MLP-based classification of super-resolution data Auer, Alexander Strauss, Maximilian T Strauss, Sebastian Jungmann, Ralf Bioinformatics Applications Notes MOTIVATION: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually needs initial classification, which is up to now often performed manually. RESULTS: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic user interface. AVAILABILITY AND IMPLEMENTATION: nanoTRON is written in Python and freely available under the MIT license as a part of the software collection Picasso on GitHub (http://www.github.com/jungmannlab/picasso). All raw data can be obtained from the authors upon reasonable request. CONTACT: jungmann@biochem.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-06 2020-04-14 /pmc/articles/PMC7267816/ /pubmed/32145010 http://dx.doi.org/10.1093/bioinformatics/btaa154 Text en © The Author(s) 2020. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Auer, Alexander
Strauss, Maximilian T
Strauss, Sebastian
Jungmann, Ralf
nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title_full nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title_fullStr nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title_full_unstemmed nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title_short nanoTRON: a Picasso module for MLP-based classification of super-resolution data
title_sort nanotron: a picasso module for mlp-based classification of super-resolution data
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267816/
https://www.ncbi.nlm.nih.gov/pubmed/32145010
http://dx.doi.org/10.1093/bioinformatics/btaa154
work_keys_str_mv AT aueralexander nanotronapicassomoduleformlpbasedclassificationofsuperresolutiondata
AT straussmaximiliant nanotronapicassomoduleformlpbasedclassificationofsuperresolutiondata
AT strausssebastian nanotronapicassomoduleformlpbasedclassificationofsuperresolutiondata
AT jungmannralf nanotronapicassomoduleformlpbasedclassificationofsuperresolutiondata