Cargando…
V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data
SUMMARY: Single-cell RNA-sequencing (scRNA-seq) technology enables studying gene expression programs from individual cells. However, these data are subject to diverse sources of variation, including ‘unwanted’ variation that needs to be removed in downstream analyses (e.g. batch effects) and ‘wanted...
Autores principales: | Lawlor, Nathan, Marquez, Eladio J, Lee, Donghyung, Ucar, Duygu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267827/ https://www.ncbi.nlm.nih.gov/pubmed/32119082 http://dx.doi.org/10.1093/bioinformatics/btaa128 |
Ejemplares similares
-
Detection of correlated hidden factors from single cell transcriptomes using Iteratively Adjusted-SVA (IA-SVA)
por: Lee, Donghyung, et al.
Publicado: (2018) -
SVA: software for annotating and visualizing sequenced human genomes
por: Ge, Dongliang, et al.
Publicado: (2011) -
CANDI: an R package and Shiny app for annotating radiographs and evaluating computer-aided diagnosis
por: Badgeley, Marcus A, et al.
Publicado: (2019) -
ShinyArchR.UiO: user-friendly,integrative and open-source tool for visualization of single-cell ATAC-seq data using ArchR
por: Sharma, Ankush, et al.
Publicado: (2021) -
shinyChromosome: An R/Shiny Application for Interactive Creation of Non-circular Plots of Whole Genomes
por: Yu, Yiming, et al.
Publicado: (2019)