Cargando…
Interpretable factor models of single-cell RNA-seq via variational autoencoders
MOTIVATION: Single-cell RNA-seq makes possible the investigation of variability in gene expression among cells, and dependence of variation on cell type. Statistical inference methods for such analyses must be scalable, and ideally interpretable. RESULTS: We present an approach based on a modificati...
Autores principales: | Svensson, Valentine, Gayoso, Adam, Yosef, Nir, Pachter, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267837/ https://www.ncbi.nlm.nih.gov/pubmed/32176273 http://dx.doi.org/10.1093/bioinformatics/btaa169 |
Ejemplares similares
-
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
por: Carilli, Maria, et al.
Publicado: (2023) -
Generating tertiary protein structures via interpretable graph variational autoencoders
por: Guo, Xiaojie, et al.
Publicado: (2021) -
RNA-Seq and find: entering the RNA deep field
por: Roberts, Adam, et al.
Publicado: (2011) -
TopHat: discovering splice junctions with RNA-Seq
por: Trapnell, Cole, et al.
Publicado: (2009) -
Protein velocity and acceleration from single-cell multiomics experiments
por: Gorin, Gennady, et al.
Publicado: (2020)