Cargando…
Regression‐based machine‐learning approaches to predict task activation using resting‐state fMRI
Resting‐state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting‐state network features to activation z‐scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction...
Autores principales: | Cohen, Alexander D., Chen, Ziyi, Parker Jones, Oiwi, Niu, Chen, Wang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267916/ https://www.ncbi.nlm.nih.gov/pubmed/31638304 http://dx.doi.org/10.1002/hbm.24841 |
Ejemplares similares
-
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014) -
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
por: Kannurpatti, Sridhar S., et al.
Publicado: (2012) -
Regression dynamic causal modeling for resting‐state fMRI
por: Frässle, Stefan, et al.
Publicado: (2021) -
An information-theoretic analysis of resting-state versus task fMRI
por: Tuominen, Julia, et al.
Publicado: (2023) -
Hemodynamic timing in resting-state and breathing-task BOLD fMRI
por: Gong, Jingxuan, et al.
Publicado: (2023)