Cargando…
Accurate and robust segmentation of neuroanatomy in T1‐weighted MRI by combining spatial priors with deep convolutional neural networks
Neuroanatomical segmentation in magnetic resonance imaging (MRI) of the brain is a prerequisite for quantitative volume, thickness, and shape measurements, as well as an important intermediate step in many preprocessing pipelines. This work introduces a new highly accurate and versatile method based...
Autores principales: | Novosad, Philip, Fonov, Vladimir, Collins, D. Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267949/ https://www.ncbi.nlm.nih.gov/pubmed/31633863 http://dx.doi.org/10.1002/hbm.24803 |
Ejemplares similares
-
MRI and cognitive scores complement each other to accurately predict Alzheimer's dementia 2 to 7 years before clinical onset
por: Zandifar, Azar, et al.
Publicado: (2019) -
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021) -
An Accurate and Robust Method for Spike Sorting Based on Convolutional Neural Networks
por: Li, Zhaohui, et al.
Publicado: (2020) -
Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury
por: De Feo, Riccardo, et al.
Publicado: (2022) -
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
por: Liu, Renfei, et al.
Publicado: (2022)