Cargando…
Improved prediction of brain age using multimodal neuroimaging data
Brain age prediction based on imaging data and machine learning (ML) methods has great potential to provide insights into the development of cognition and mental disorders. Though different ML models have been proposed, a systematic comparison of ML models in combination with imaging features derive...
Autores principales: | Niu, Xin, Zhang, Fengqing, Kounios, John, Liang, Hualou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267976/ https://www.ncbi.nlm.nih.gov/pubmed/31837193 http://dx.doi.org/10.1002/hbm.24899 |
Ejemplares similares
-
Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer’s Disease related neurodegeneration
por: Taylor, Alexei, et al.
Publicado: (2022) -
Pypes: Workflows for Processing Multimodal Neuroimaging Data
por: Savio, Alexandre M., et al.
Publicado: (2017) -
An Overview of Multimodal Neuroimaging Using Nanoprobes
por: Sridhar, Sriram, et al.
Publicado: (2017) -
Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors
por: Cole, James H.
Publicado: (2020) -
Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
por: Luckett, Patrick H., et al.
Publicado: (2023)