Cargando…
CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning
BACKGROUND: The latest works on CRISPR genome editing tools mainly employs deep learning techniques. However, deep learning models lack explainability and they are harder to reproduce. We were motivated to build an accurate genome editing tool using sequence-based features and traditional machine le...
Autores principales: | Muhammad Rafid, Ali Haisam, Toufikuzzaman, Md., Rahman, Mohammad Saifur, Rahman, M. Sohel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268231/ https://www.ncbi.nlm.nih.gov/pubmed/32487025 http://dx.doi.org/10.1186/s12859-020-3531-9 |
Ejemplares similares
-
CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems
por: Rahman, Md. Khaledur, et al.
Publicado: (2017) -
Deep learning improves the ability of sgRNA off-target propensity prediction
por: Liu, Qiaoyue, et al.
Publicado: (2020) -
Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression
por: Long, Lu, et al.
Publicado: (2018) -
Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library
por: Henkel, Luisa, et al.
Publicado: (2020) -
Sequence determinants of improved CRISPR sgRNA design
por: Xu, Han, et al.
Publicado: (2015)