Cargando…
Yield prediction by machine learning from UAS-based mulit-sensor data fusion in soybean
BACKGROUND: Nowadays, automated phenotyping of plants is essential for precise and cost-effective improvement in the efficiency of crop genetics. In recent years, machine learning (ML) techniques have shown great success in the classification and modelling of crop parameters. In this research, we co...
Autores principales: | Herrero-Huerta, Monica, Rodriguez-Gonzalvez, Pablo, Rainey, Katy M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268475/ https://www.ncbi.nlm.nih.gov/pubmed/32514286 http://dx.doi.org/10.1186/s13007-020-00620-6 |
Ejemplares similares
-
Quantitative Genomic Dissection of Soybean Yield Components
por: Xavier, Alencar, et al.
Publicado: (2019) -
Automatic tree parameter extraction by a Mobile LiDAR System in an urban context
por: Herrero-Huerta, Mónica, et al.
Publicado: (2018) -
UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat
por: Fei, Shuaipeng, et al.
Publicado: (2022) -
Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System
por: Herrero-Huerta, Monica, et al.
Publicado: (2020) -
Genetic Relationships Among Physiological Processes, Phenology, and Grain Yield Offer an Insight Into the Development of New Cultivars in Soybean (Glycine max L. Merr)
por: Lopez, Miguel Angel, et al.
Publicado: (2021)