Cargando…
Automatic kernel counting on maize ear using RGB images
BACKGROUND: The number of kernels per ear is one of the major agronomic yield indicators for maize. Manual assessment of kernel traits can be time consuming and laborious. Moreover, manually acquired data can be influenced by subjective bias of the observer. Existing methods for counting of kernel n...
Autores principales: | Wu, Di, Cai, Zhen, Han, Jiwan, Qin, Huawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268725/ https://www.ncbi.nlm.nih.gov/pubmed/32518581 http://dx.doi.org/10.1186/s13007-020-00619-z |
Ejemplares similares
-
High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging
por: Makanza, R., et al.
Publicado: (2018) -
Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images
por: Fernandez-Gallego, Jose A., et al.
Publicado: (2018) -
Automatic rape flower cluster counting method based on low-cost labelling and UAV-RGB images
por: Li, Jie, et al.
Publicado: (2023) -
Maize Silage Kernel Fragment Estimation Using Deep Learning-Based Object Recognition in Non-Separated Kernel/Stover RGB Images
por: Rasmussen, Christoffer Bøgelund, et al.
Publicado: (2019) -
The automatic recognition and counting of cough
por: Barry, Samantha J, et al.
Publicado: (2006)