Cargando…
Private Genomes and Public SNPs: Homomorphic Encryption of Genotypes and Phenotypes for Shared Quantitative Genetics
Sharing human genotype and phenotype data is essential to discover otherwise inaccessible genetic associations, but is a challenge because of privacy concerns. Here, we present a method of homomorphic encryption that obscures individuals’ genotypes and phenotypes, and is suited to quantitative genet...
Autores principales: | Mott, Richard, Fischer, Christian, Prins, Pjotr, Davies, Robert William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268998/ https://www.ncbi.nlm.nih.gov/pubmed/32327562 http://dx.doi.org/10.1534/genetics.120.303153 |
Ejemplares similares
-
Private genome analysis through homomorphic encryption
por: Kim, Miran, et al.
Publicado: (2015) -
Fast and Scalable Private Genotype Imputation Using Machine Learning and Partially Homomorphic Encryption
por: SARKAR, ESHA, et al.
Publicado: (2021) -
Secure Inference on Homomorphically Encrypted Genotype Data with Encrypted Linear Models
por: Zou, Meng, et al.
Publicado: (2023) -
Achieving GWAS with homomorphic encryption
por: Sim, Jun Jie, et al.
Publicado: (2020) -
A quantum approach to homomorphic encryption
por: Tan, Si-Hui, et al.
Publicado: (2016)