Cargando…
Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data
BACKGROUND: Acute kidney injury (AKI) is a significant cause of morbidity and mortality, especially in sepsis patients. Early prediction of AKI can help physicians determine the appropriate intervention, and thus, improve the outcome. This study aimed to develop a nomogram to predict the risk of AKI...
Autores principales: | Deng, Fuxing, Peng, Milin, Li, Jing, Chen, Yana, Zhang, Buyao, Zhao, Shuangping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269058/ https://www.ncbi.nlm.nih.gov/pubmed/32401139 http://dx.doi.org/10.1080/0886022X.2020.1761832 |
Ejemplares similares
-
Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9
por: Liu, Wei, et al.
Publicado: (2023) -
Development of a nomogram model for the early prediction of sepsis-associated acute kidney injury in critically ill patients
por: Peng, Milin, et al.
Publicado: (2023) -
Development and deployment of interpretable machine-learning model for predicting in-hospital mortality in elderly patients with acute kidney disease
por: Li, Mingxia, et al.
Publicado: (2022) -
The association between plasma osmolality and in-hospital mortality in the first 24 h after neonatal intensive care unit admission
por: Liu, Weiqin, et al.
Publicado: (2023) -
First 24-h Sardjito Cardiovascular Intensive Care (SCIENCE) admission risk score to predict mortality in cardiovascular intensive care unit (CICU)
por: Bagaswoto, Hendry Purnasidha, et al.
Publicado: (2022)