Cargando…
Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
BACKGROUND: The tarantula Chilobrachys jingzhao is one of the largest venomous spiders in China. In previous studies, we purified and characterized at least eight peptides from C. jingzhao venom. In this report, we describe the purification and characterization of Jingzhaotoxin-X (JZTX-X), which sel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centro de Estudos de Venenos e Animais Peçonhentos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269146/ https://www.ncbi.nlm.nih.gov/pubmed/32536941 http://dx.doi.org/10.1590/1678-9199-JVATITD-2019-0043 |
_version_ | 1783541732003020800 |
---|---|
author | Deng, Meichun Jiang, Liping Luo, Xuan Tao, Huai Liang, Songping |
author_facet | Deng, Meichun Jiang, Liping Luo, Xuan Tao, Huai Liang, Songping |
author_sort | Deng, Meichun |
collection | PubMed |
description | BACKGROUND: The tarantula Chilobrachys jingzhao is one of the largest venomous spiders in China. In previous studies, we purified and characterized at least eight peptides from C. jingzhao venom. In this report, we describe the purification and characterization of Jingzhaotoxin-X (JZTX-X), which selectively blocks Kv4.2 and Kv4.3 potassium channels. METHODS: JZTX-X was purified using a combination of cation-exchange HPLC and reverse-phase HPLC. The amino-acid sequence was determined by automated Edman degradation and confirmed by mass spectrometry (MS). Voltage-gated ion channel currents were recorded in HEK293t cells transiently transfected with a variety of ion channel constructs. In addition, the hyperalgesic activity of JZTX-X and the toxin´s effect on motor function were assessed in mice. RESULTS: JZTX-X contained 31 amino acids, with six cysteine residues that formed three disulfide bonds within an inhibitory cysteine knot (ICK) topology. In whole-cell voltage-clamp experiments, JZTX-X inhibited Kv4.2 and Kv4.3 potassium channels in a concentration- and voltage-dependent manner, without affecting other ion channels (Kv1.1, 1.2, 1.3, 2.1, delayed rectifier potassium channels, high- and low-voltage-activated Ca2+ channels, and voltage-gated sodium channels Nav1.5 and 1.7). JZTX-X also shifted the voltage-dependent channel activation to more depolarized potentials, whereas extreme depolarization caused reversible toxin binding to Kv4.2 channels. JZTX-X shifted the Kv4.2 and Kv4.3 activities towards a resting state, since at the resting potential the toxin completely inhibited the channels, even in the absence of an applied physical stimulus. Intrathecal or intraplantar injection of JZTX-X caused a long-lasting decrease in the mechanical nociceptive threshold (hyperalgesia) but had no effect on motor function as assessed in the rotarod test. CONCLUSIONS: JZTX-X selectively suppresses Kv4.2 and Kv4.3 potassium channel activity in a concentration- and voltage-dependent manner and causes long-lasting mechanical hyperalgesia. |
format | Online Article Text |
id | pubmed-7269146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Centro de Estudos de Venenos e Animais Peçonhentos |
record_format | MEDLINE/PubMed |
spelling | pubmed-72691462020-06-11 Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao Deng, Meichun Jiang, Liping Luo, Xuan Tao, Huai Liang, Songping J Venom Anim Toxins Incl Trop Dis Research BACKGROUND: The tarantula Chilobrachys jingzhao is one of the largest venomous spiders in China. In previous studies, we purified and characterized at least eight peptides from C. jingzhao venom. In this report, we describe the purification and characterization of Jingzhaotoxin-X (JZTX-X), which selectively blocks Kv4.2 and Kv4.3 potassium channels. METHODS: JZTX-X was purified using a combination of cation-exchange HPLC and reverse-phase HPLC. The amino-acid sequence was determined by automated Edman degradation and confirmed by mass spectrometry (MS). Voltage-gated ion channel currents were recorded in HEK293t cells transiently transfected with a variety of ion channel constructs. In addition, the hyperalgesic activity of JZTX-X and the toxin´s effect on motor function were assessed in mice. RESULTS: JZTX-X contained 31 amino acids, with six cysteine residues that formed three disulfide bonds within an inhibitory cysteine knot (ICK) topology. In whole-cell voltage-clamp experiments, JZTX-X inhibited Kv4.2 and Kv4.3 potassium channels in a concentration- and voltage-dependent manner, without affecting other ion channels (Kv1.1, 1.2, 1.3, 2.1, delayed rectifier potassium channels, high- and low-voltage-activated Ca2+ channels, and voltage-gated sodium channels Nav1.5 and 1.7). JZTX-X also shifted the voltage-dependent channel activation to more depolarized potentials, whereas extreme depolarization caused reversible toxin binding to Kv4.2 channels. JZTX-X shifted the Kv4.2 and Kv4.3 activities towards a resting state, since at the resting potential the toxin completely inhibited the channels, even in the absence of an applied physical stimulus. Intrathecal or intraplantar injection of JZTX-X caused a long-lasting decrease in the mechanical nociceptive threshold (hyperalgesia) but had no effect on motor function as assessed in the rotarod test. CONCLUSIONS: JZTX-X selectively suppresses Kv4.2 and Kv4.3 potassium channel activity in a concentration- and voltage-dependent manner and causes long-lasting mechanical hyperalgesia. Centro de Estudos de Venenos e Animais Peçonhentos 2020-05-29 /pmc/articles/PMC7269146/ /pubmed/32536941 http://dx.doi.org/10.1590/1678-9199-JVATITD-2019-0043 Text en https://creativecommons.org/licenses/by/4.0/ © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Deng, Meichun Jiang, Liping Luo, Xuan Tao, Huai Liang, Songping Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao |
title | Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
|
title_full | Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
|
title_fullStr | Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
|
title_full_unstemmed | Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
|
title_short | Jingzhaotoxin-X, a gating modifier of Kv4.2 and Kv4.3 potassium channels purified from the venom of the Chinese tarantula Chilobrachys jingzhao
|
title_sort | jingzhaotoxin-x, a gating modifier of kv4.2 and kv4.3 potassium channels purified from the venom of the chinese tarantula chilobrachys jingzhao |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269146/ https://www.ncbi.nlm.nih.gov/pubmed/32536941 http://dx.doi.org/10.1590/1678-9199-JVATITD-2019-0043 |
work_keys_str_mv | AT dengmeichun jingzhaotoxinxagatingmodifierofkv42andkv43potassiumchannelspurifiedfromthevenomofthechinesetarantulachilobrachysjingzhao AT jiangliping jingzhaotoxinxagatingmodifierofkv42andkv43potassiumchannelspurifiedfromthevenomofthechinesetarantulachilobrachysjingzhao AT luoxuan jingzhaotoxinxagatingmodifierofkv42andkv43potassiumchannelspurifiedfromthevenomofthechinesetarantulachilobrachysjingzhao AT taohuai jingzhaotoxinxagatingmodifierofkv42andkv43potassiumchannelspurifiedfromthevenomofthechinesetarantulachilobrachysjingzhao AT liangsongping jingzhaotoxinxagatingmodifierofkv42andkv43potassiumchannelspurifiedfromthevenomofthechinesetarantulachilobrachysjingzhao |