Cargando…
A 12-Lead ECG-Based System With Physiological Parameters and Machine Learning to Identify Right Ventricular Hypertrophy in Young Adults
Objective: The presence of right ventricular hypertrophy (RVH) accounts for approximately 5-10% in young adults. The sensitivity estimated by commonly used 12-lead electrocardiographic (ECG) criteria for identifying the presence of RVH is under 20% in the general population. The aim of this study is...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269457/ https://www.ncbi.nlm.nih.gov/pubmed/32509473 http://dx.doi.org/10.1109/JTEHM.2020.2996370 |
Ejemplares similares
-
Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning
por: De la Garza Salazar, Fernando, et al.
Publicado: (2021) -
Detection of left ventricular hypertrophy on the ECG through machine learning with a focus on obesity
por: Angelaki, E, et al.
Publicado: (2022) -
Deep learning to diagnose left ventricular hypertrophy from standard, 12-lead ECG signals: a proof-of-concept study
por: Pantelidis, P, et al.
Publicado: (2023) -
The Role of ECG in the Diagnosis of Left Ventricular Hypertrophy
por: Bacharova, Ljuba, et al.
Publicado: (2014) -
Predicting left ventricular hypertrophy from the 12-lead electrocardiogram in the UK Biobank imaging study using machine learning
por: Naderi, Hafiz, et al.
Publicado: (2023)