Cargando…
Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269475/ https://www.ncbi.nlm.nih.gov/pubmed/32205343 http://dx.doi.org/10.1128/AAC.00123-20 |
_version_ | 1783541771804868608 |
---|---|
author | Softley, Charlotte A. Zak, Krzysztof M. Bostock, Mark J. Fino, Roberto Zhou, Richard Xu Kolonko, Marta Mejdi-Nitiu, Ramona Meyer, Hannelore Sattler, Michael Popowicz, Grzegorz M. |
author_facet | Softley, Charlotte A. Zak, Krzysztof M. Bostock, Mark J. Fino, Roberto Zhou, Richard Xu Kolonko, Marta Mejdi-Nitiu, Ramona Meyer, Hannelore Sattler, Michael Popowicz, Grzegorz M. |
author_sort | Softley, Charlotte A. |
collection | PubMed |
description | Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance. |
format | Online Article Text |
id | pubmed-7269475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-72694752020-06-09 Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase Softley, Charlotte A. Zak, Krzysztof M. Bostock, Mark J. Fino, Roberto Zhou, Richard Xu Kolonko, Marta Mejdi-Nitiu, Ramona Meyer, Hannelore Sattler, Michael Popowicz, Grzegorz M. Antimicrob Agents Chemother Mechanisms of Resistance Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance. American Society for Microbiology 2020-05-21 /pmc/articles/PMC7269475/ /pubmed/32205343 http://dx.doi.org/10.1128/AAC.00123-20 Text en Copyright © 2020 Softley et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Mechanisms of Resistance Softley, Charlotte A. Zak, Krzysztof M. Bostock, Mark J. Fino, Roberto Zhou, Richard Xu Kolonko, Marta Mejdi-Nitiu, Ramona Meyer, Hannelore Sattler, Michael Popowicz, Grzegorz M. Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title | Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title_full | Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title_fullStr | Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title_full_unstemmed | Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title_short | Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase |
title_sort | structure and molecular recognition mechanism of imp-13 metallo-β-lactamase |
topic | Mechanisms of Resistance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269475/ https://www.ncbi.nlm.nih.gov/pubmed/32205343 http://dx.doi.org/10.1128/AAC.00123-20 |
work_keys_str_mv | AT softleycharlottea structureandmolecularrecognitionmechanismofimp13metalloblactamase AT zakkrzysztofm structureandmolecularrecognitionmechanismofimp13metalloblactamase AT bostockmarkj structureandmolecularrecognitionmechanismofimp13metalloblactamase AT finoroberto structureandmolecularrecognitionmechanismofimp13metalloblactamase AT zhourichardxu structureandmolecularrecognitionmechanismofimp13metalloblactamase AT kolonkomarta structureandmolecularrecognitionmechanismofimp13metalloblactamase AT mejdinitiuramona structureandmolecularrecognitionmechanismofimp13metalloblactamase AT meyerhannelore structureandmolecularrecognitionmechanismofimp13metalloblactamase AT sattlermichael structureandmolecularrecognitionmechanismofimp13metalloblactamase AT popowiczgrzegorzm structureandmolecularrecognitionmechanismofimp13metalloblactamase |