Cargando…

Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase

Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat,...

Descripción completa

Detalles Bibliográficos
Autores principales: Softley, Charlotte A., Zak, Krzysztof M., Bostock, Mark J., Fino, Roberto, Zhou, Richard Xu, Kolonko, Marta, Mejdi-Nitiu, Ramona, Meyer, Hannelore, Sattler, Michael, Popowicz, Grzegorz M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269475/
https://www.ncbi.nlm.nih.gov/pubmed/32205343
http://dx.doi.org/10.1128/AAC.00123-20
_version_ 1783541771804868608
author Softley, Charlotte A.
Zak, Krzysztof M.
Bostock, Mark J.
Fino, Roberto
Zhou, Richard Xu
Kolonko, Marta
Mejdi-Nitiu, Ramona
Meyer, Hannelore
Sattler, Michael
Popowicz, Grzegorz M.
author_facet Softley, Charlotte A.
Zak, Krzysztof M.
Bostock, Mark J.
Fino, Roberto
Zhou, Richard Xu
Kolonko, Marta
Mejdi-Nitiu, Ramona
Meyer, Hannelore
Sattler, Michael
Popowicz, Grzegorz M.
author_sort Softley, Charlotte A.
collection PubMed
description Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance.
format Online
Article
Text
id pubmed-7269475
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-72694752020-06-09 Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase Softley, Charlotte A. Zak, Krzysztof M. Bostock, Mark J. Fino, Roberto Zhou, Richard Xu Kolonko, Marta Mejdi-Nitiu, Ramona Meyer, Hannelore Sattler, Michael Popowicz, Grzegorz M. Antimicrob Agents Chemother Mechanisms of Resistance Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely used antibiotic class, the β-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance. American Society for Microbiology 2020-05-21 /pmc/articles/PMC7269475/ /pubmed/32205343 http://dx.doi.org/10.1128/AAC.00123-20 Text en Copyright © 2020 Softley et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Mechanisms of Resistance
Softley, Charlotte A.
Zak, Krzysztof M.
Bostock, Mark J.
Fino, Roberto
Zhou, Richard Xu
Kolonko, Marta
Mejdi-Nitiu, Ramona
Meyer, Hannelore
Sattler, Michael
Popowicz, Grzegorz M.
Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title_full Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title_fullStr Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title_full_unstemmed Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title_short Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
title_sort structure and molecular recognition mechanism of imp-13 metallo-β-lactamase
topic Mechanisms of Resistance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269475/
https://www.ncbi.nlm.nih.gov/pubmed/32205343
http://dx.doi.org/10.1128/AAC.00123-20
work_keys_str_mv AT softleycharlottea structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT zakkrzysztofm structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT bostockmarkj structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT finoroberto structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT zhourichardxu structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT kolonkomarta structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT mejdinitiuramona structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT meyerhannelore structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT sattlermichael structureandmolecularrecognitionmechanismofimp13metalloblactamase
AT popowiczgrzegorzm structureandmolecularrecognitionmechanismofimp13metalloblactamase