Cargando…

MK-571, a Cysteinyl Leukotriene Receptor 1 Antagonist, Inhibits Hepatitis C Virus Replication

The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct-acting antiviral (DAA) effi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz, Isaac, Nevers, Quentin, Hernández, Eva, Ahnou, Nazim, Brillet, Rozenn, Softic, Laurent, Donati, Flora, Berry, Francois, Hamadat, Sabah, Fourati, Slim, Pawlotsky, Jean-Michel, Ahmed-Belkacem, Abdelhakim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269486/
https://www.ncbi.nlm.nih.gov/pubmed/32179525
http://dx.doi.org/10.1128/AAC.02078-19
Descripción
Sumario:The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct-acting antiviral (DAA) efficiency, we observed an unexpected anti-HCV effect of compound MK-571 alone. This anti-HCV activity was characterized in Huh7.5 cells stably harboring a subgenomic genotype 1b replicon. A dose-dependent decrease of HCV RNA levels was observed upon MK-571 administration, with a 50% effective concentration (EC(50) ± standard deviation) of 9 ± 0.3 μM and a maximum HCV RNA level reduction of approximatively 1 log(10). MK-571 also reduced the replication of the HCV full-length J6/JFH1 model in a dose-dependent manner. However, probenecid and apigenin homodimer (APN), two specific inhibitors of MRP-1, had no effect on HCV replication. In contrast, the CysLTR1 antagonist SR2640 increased HCV-subgenomic replicon (SGR) RNA levels in a dose-dependent manner, with a maximum increase of 10-fold. In addition, a combination of natural CysLTR1 agonist (LTD4) or antagonists (zafirlukast, cinalukast, and SR2640) with MK-571 completely reversed its antiviral effect, suggesting its anti-HCV activity is related to CysLTR1 rather to MRP-1 inhibition. In conclusion, we showed that MK-571 inhibits HCV replication in hepatoma cell cultures by acting as a CysLTR1 receptor antagonist, thus unraveling a new host-virus interaction in the HCV life cycle.