Cargando…

Extended Bose-Hubbard Model with Cavity-Mediated Infinite-Range Interactions at Finite Temperatures

We consider the finite-temperature properties of the extended Bose-Hubbard model realized recently in an ETH experiment [Nature 532, 476 (2016)]. Competing short- and global-range interactions accommodate fascinating collective phenomena. We formulate a self-consistent mean-field theory to describe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Huang-Jie, Yu, Yan-Qiang, Zheng, Dong-Chen, Liao, Renyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270117/
https://www.ncbi.nlm.nih.gov/pubmed/32494030
http://dx.doi.org/10.1038/s41598-020-66054-1
Descripción
Sumario:We consider the finite-temperature properties of the extended Bose-Hubbard model realized recently in an ETH experiment [Nature 532, 476 (2016)]. Competing short- and global-range interactions accommodate fascinating collective phenomena. We formulate a self-consistent mean-field theory to describe the behaviors of the system at finite temperatures. At a fixed chemical potential, we map out the distributions of the superfluid order parameters and number densities with respect to the temperatures. For a charge density wave, we find that the global-range interaction enhances the charge order by increasing the transition temperature at which the charge order melts out, while for a supersolid phase, we find that the disappearance of the charge order and the superfluid order occurs at different temperature. At a fixed number-density filling factor, we extract the temperature dependence of the thermodynamic functions such as internal energy, specific heat and entropy. Across the superfluid phase transition, the specific heat has a discontinuous jump.