Cargando…
Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base
Purpose: The aim of this study was to investigate the diagnostic value of machine-learning models with radiomic features and clinical features in preoperative differentiation of common lesions located in the anterior skull base. Methods: A total of 235 patients diagnosed with pituitary adenoma, meni...
Autores principales: | Zhang, Yang, Shang, Lan, Chen, Chaoyue, Ma, Xuelei, Ou, Xuejin, Wang, Jian, Xia, Fan, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270197/ https://www.ncbi.nlm.nih.gov/pubmed/32547944 http://dx.doi.org/10.3389/fonc.2020.00752 |
Ejemplares similares
-
Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma
por: Chen, Chaoyue, et al.
Publicado: (2020) -
Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
por: Chen, Chaoyue, et al.
Publicado: (2019) -
Glioblastoma and Anaplastic Astrocytoma: Differentiation Using MRI Texture Analysis
por: Tian, Zerong, et al.
Publicado: (2019) -
Discrimination of Pancreatic Serous Cystadenomas From Mucinous Cystadenomas With CT Textural Features: Based on Machine Learning
por: Yang, Jing, et al.
Publicado: (2019) -
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019)