Cargando…
An Optimal Control Framework for the Automated Design of Personalized Cancer Treatments
One of the key challenges in current cancer research is the development of computational strategies to support clinicians in the identification of successful personalized treatments. Control theory might be an effective approach to this end, as proven by the long-established application to therapy d...
Autores principales: | Angaroni, Fabrizio, Graudenzi, Alex, Rossignolo, Marco, Maspero, Davide, Calarco, Tommaso, Piazza, Rocco, Montangero, Simone, Antoniotti, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270334/ https://www.ncbi.nlm.nih.gov/pubmed/32548108 http://dx.doi.org/10.3389/fbioe.2020.00523 |
Ejemplares similares
-
VERSO: A comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples
por: Ramazzotti, Daniele, et al.
Publicado: (2021) -
Early detection and improved genomic surveillance of SARS-CoV-2 variants from deep sequencing data
por: Ramazzotti, Daniele, et al.
Publicado: (2022) -
Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines
por: Ramazzotti, Daniele, et al.
Publicado: (2022) -
SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples
por: Mella, Lorenzo, et al.
Publicado: (2022) -
Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity
por: Graudenzi, Alex, et al.
Publicado: (2021)