Cargando…
Neuromorphic Systems Design by Matching Inductive Biases to Hardware Constraints
Neuromorphic systems are designed with careful consideration of the physical properties of the computational substrate they use. Neuromorphic engineers often exploit physical phenomena to directly implement a desired functionality, enabled by “the isomorphism between physical processes in different...
Autores principales: | Muller, Lorenz K., Stark, Pascal, Offrein, Bert Jan, Abel, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270357/ https://www.ncbi.nlm.nih.gov/pubmed/32547357 http://dx.doi.org/10.3389/fnins.2020.00437 |
Ejemplares similares
-
Editorial: Physical neuromorphic computing and its industrial applications
por: Yamane, Toshiyuki, et al.
Publicado: (2023) -
Neuromorphic Hardware Learns to Learn
por: Bohnstingl, Thomas, et al.
Publicado: (2019) -
Parallelization of Neural Processing on Neuromorphic Hardware
por: Peres, Luca, et al.
Publicado: (2022) -
Beyond LIF Neurons on Neuromorphic Hardware
por: Ward, Mollie, et al.
Publicado: (2022) -
Benchmarking Neuromorphic Hardware and Its Energy Expenditure
por: Ostrau, Christoph, et al.
Publicado: (2022)