Cargando…
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function
Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270506/ https://www.ncbi.nlm.nih.gov/pubmed/32502938 http://dx.doi.org/10.1016/j.omtn.2020.05.009 |
_version_ | 1783541910393061376 |
---|---|
author | Cruz, Lilian György, Bence Cheah, Pike See Kleinstiver, Benjamin P. Eimer, William A. Garcia, Sara P. Sharma, Nutan Ozelius, Laurie J. Bragg, D. Cristopher Joung, J. Keith Norberto de Souza, Osmar Macedo Timmers, Luis Fernando Saraiva Breakefield, Xandra O. |
author_facet | Cruz, Lilian György, Bence Cheah, Pike See Kleinstiver, Benjamin P. Eimer, William A. Garcia, Sara P. Sharma, Nutan Ozelius, Laurie J. Bragg, D. Cristopher Joung, J. Keith Norberto de Souza, Osmar Macedo Timmers, Luis Fernando Saraiva Breakefield, Xandra O. |
author_sort | Cruz, Lilian |
collection | PubMed |
description | Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function. |
format | Online Article Text |
id | pubmed-7270506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-72705062020-06-08 Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function Cruz, Lilian György, Bence Cheah, Pike See Kleinstiver, Benjamin P. Eimer, William A. Garcia, Sara P. Sharma, Nutan Ozelius, Laurie J. Bragg, D. Cristopher Joung, J. Keith Norberto de Souza, Osmar Macedo Timmers, Luis Fernando Saraiva Breakefield, Xandra O. Mol Ther Nucleic Acids Article Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function. American Society of Gene & Cell Therapy 2020-05-15 /pmc/articles/PMC7270506/ /pubmed/32502938 http://dx.doi.org/10.1016/j.omtn.2020.05.009 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Cruz, Lilian György, Bence Cheah, Pike See Kleinstiver, Benjamin P. Eimer, William A. Garcia, Sara P. Sharma, Nutan Ozelius, Laurie J. Bragg, D. Cristopher Joung, J. Keith Norberto de Souza, Osmar Macedo Timmers, Luis Fernando Saraiva Breakefield, Xandra O. Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title | Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title_full | Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title_fullStr | Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title_full_unstemmed | Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title_short | Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function |
title_sort | mutant allele-specific crispr disruption in dyt1 dystonia fibroblasts restores cell function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270506/ https://www.ncbi.nlm.nih.gov/pubmed/32502938 http://dx.doi.org/10.1016/j.omtn.2020.05.009 |
work_keys_str_mv | AT cruzlilian mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT gyorgybence mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT cheahpikesee mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT kleinstiverbenjaminp mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT eimerwilliama mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT garciasarap mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT sharmanutan mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT ozeliuslauriej mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT braggdcristopher mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT joungjkeith mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT norbertodesouzaosmar mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT macedotimmersluisfernandosaraiva mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction AT breakefieldxandrao mutantallelespecificcrisprdisruptionindyt1dystoniafibroblastsrestorescellfunction |