Cargando…
Measuring the Quality of Explanations: The System Causability Scale (SCS): Comparing Human and Machine Explanations
Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow problem solving automatically without any human intervention. Autonomous approaches can be very convenient. However, in certain domains, e.g., in the medical domain, it is necessary to enable a domain expert to understand...
Autores principales: | Holzinger, Andreas, Carrington, André, Müller, Heimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271052/ https://www.ncbi.nlm.nih.gov/pubmed/32549653 http://dx.doi.org/10.1007/s13218-020-00636-z |
Ejemplares similares
-
Causability and explainability of artificial intelligence in medicine
por: Holzinger, Andreas, et al.
Publicado: (2019) -
Explainability and causability in digital pathology
por: Plass, Markus, et al.
Publicado: (2023) -
Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs
por: Finzel, Bettina, et al.
Publicado: (2022) -
Explainable AI and Multi-Modal Causability in Medicine
por: Holzinger, Andreas
Publicado: (2021) -
Explanation
Publicado: (1844)