Cargando…
Efficient Closed-loop Maximization of Carbon Nanotube Growth Rate using Bayesian Optimization
A major technological challenge in materials research is the large and complex parameter space, which hinders experimental throughput and ultimately slows down development and implementation. In single-walled carbon nanotube (CNT) synthesis, for instance, the poor yield obtained from conventional ca...
Autores principales: | Chang, Jorge, Nikolaev, Pavel, Carpena-Núñez, Jennifer, Rao, Rahul, Decker, Kevin, Islam, Ahmad E., Kim, Jiseob, Pitt, Mark A., Myung, Jay I., Maruyama, Benji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271124/ https://www.ncbi.nlm.nih.gov/pubmed/32493911 http://dx.doi.org/10.1038/s41598-020-64397-3 |
Ejemplares similares
-
The Bayesian Expectation-Maximization-Maximization for the 3PLM
por: Guo, Shaoyang, et al.
Publicado: (2019) -
On-the-fly closed-loop materials discovery via Bayesian active learning
por: Kusne, A. Gilad, et al.
Publicado: (2020) -
An Overview of Maximal Unitarity at Two Loops
por: Johansson, Henrik, et al.
Publicado: (2012) -
Versatile acid solvents for pristine carbon nanotube assembly
por: Headrick, Robert J., et al.
Publicado: (2022) -
Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization
por: Lorenz, Romy, et al.
Publicado: (2019)