Cargando…
Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study
BACKGROUND: Attrition rate in new army recruits is higher than in incumbent troops. In the current study, we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training. A variety of predictive models were attempted. METHODS: This retrospective cohort i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271478/ https://www.ncbi.nlm.nih.gov/pubmed/32493512 http://dx.doi.org/10.1186/s40779-020-00260-w |
_version_ | 1783542098121719808 |
---|---|
author | Orr, Robin M. Cohen, Bruce S. Allison, Stephen C. Bulathsinhala, Lakmini Zambraski, Edward J. Jaffrey, Mark |
author_facet | Orr, Robin M. Cohen, Bruce S. Allison, Stephen C. Bulathsinhala, Lakmini Zambraski, Edward J. Jaffrey, Mark |
author_sort | Orr, Robin M. |
collection | PubMed |
description | BACKGROUND: Attrition rate in new army recruits is higher than in incumbent troops. In the current study, we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training. A variety of predictive models were attempted. METHODS: This retrospective cohort included 19,769 Army soldiers of the Australian Defence Force receiving recruit training during a period from 2006 to 2011. Among them, 7692 reserve soldiers received a 28-day training course, and the remaining 12,077 full-time soldiers received an 80-day training course. Retrieved data included anthropometric measures, course-specific variables, injury, and physical fitness failure. Multivariate regression was used to develop a variety of models to predict the rate of attrition due to injuries and physical fitness failure. The area under the receiver operating characteristic curve was used to compare the performance of the models. RESULTS: In the overall analysis that included both the 28-day and 80-day courses, the incidence of injury of any type was 27.8%. The 80-day course had a higher rate of injury if calculated per course (34.3% vs. 17.6% in the 28-day course), but lower number of injuries per person-year (1.56 vs. 2.29). Fitness test failure rate was significantly higher in the 28-day course (30.0% vs. 12.1%). The overall attrition rate was 5.2 and 5.0% in the 28-day and 80-day courses, respectively. Stress fracture was common in the 80-day course (n = 44) and rare in the 28-day course (n = 1). The areas under the receiver operating characteristic curves for the course-specific predictive models were relatively low (ranging from 0.51 to 0.69), consistent with “failed” to “poor” predictive accuracy. The course-combined models performed somewhat better than the course-specific models, with two models having AUC of 0.70 and 0.78, which are considered “fair” predictive accuracy. CONCLUSION: Attrition rate was similar between 28-day and 80-day courses. In comparison to the 80-day full course, the 28-day course had a lower rate of injury but a higher number of injuries per person-year and of fitness test failure. These findings suggest fitness level at the commencement of training is a critically important factor to consider when designing the course curriculum, particularly short courses. |
format | Online Article Text |
id | pubmed-7271478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-72714782020-06-08 Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study Orr, Robin M. Cohen, Bruce S. Allison, Stephen C. Bulathsinhala, Lakmini Zambraski, Edward J. Jaffrey, Mark Mil Med Res Research BACKGROUND: Attrition rate in new army recruits is higher than in incumbent troops. In the current study, we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training. A variety of predictive models were attempted. METHODS: This retrospective cohort included 19,769 Army soldiers of the Australian Defence Force receiving recruit training during a period from 2006 to 2011. Among them, 7692 reserve soldiers received a 28-day training course, and the remaining 12,077 full-time soldiers received an 80-day training course. Retrieved data included anthropometric measures, course-specific variables, injury, and physical fitness failure. Multivariate regression was used to develop a variety of models to predict the rate of attrition due to injuries and physical fitness failure. The area under the receiver operating characteristic curve was used to compare the performance of the models. RESULTS: In the overall analysis that included both the 28-day and 80-day courses, the incidence of injury of any type was 27.8%. The 80-day course had a higher rate of injury if calculated per course (34.3% vs. 17.6% in the 28-day course), but lower number of injuries per person-year (1.56 vs. 2.29). Fitness test failure rate was significantly higher in the 28-day course (30.0% vs. 12.1%). The overall attrition rate was 5.2 and 5.0% in the 28-day and 80-day courses, respectively. Stress fracture was common in the 80-day course (n = 44) and rare in the 28-day course (n = 1). The areas under the receiver operating characteristic curves for the course-specific predictive models were relatively low (ranging from 0.51 to 0.69), consistent with “failed” to “poor” predictive accuracy. The course-combined models performed somewhat better than the course-specific models, with two models having AUC of 0.70 and 0.78, which are considered “fair” predictive accuracy. CONCLUSION: Attrition rate was similar between 28-day and 80-day courses. In comparison to the 80-day full course, the 28-day course had a lower rate of injury but a higher number of injuries per person-year and of fitness test failure. These findings suggest fitness level at the commencement of training is a critically important factor to consider when designing the course curriculum, particularly short courses. BioMed Central 2020-06-03 /pmc/articles/PMC7271478/ /pubmed/32493512 http://dx.doi.org/10.1186/s40779-020-00260-w Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Orr, Robin M. Cohen, Bruce S. Allison, Stephen C. Bulathsinhala, Lakmini Zambraski, Edward J. Jaffrey, Mark Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title | Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title_full | Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title_fullStr | Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title_full_unstemmed | Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title_short | Models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
title_sort | models to predict injury, physical fitness failure and attrition in recruit training: a retrospective cohort study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271478/ https://www.ncbi.nlm.nih.gov/pubmed/32493512 http://dx.doi.org/10.1186/s40779-020-00260-w |
work_keys_str_mv | AT orrrobinm modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy AT cohenbruces modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy AT allisonstephenc modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy AT bulathsinhalalakmini modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy AT zambraskiedwardj modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy AT jaffreymark modelstopredictinjuryphysicalfitnessfailureandattritioninrecruittrainingaretrospectivecohortstudy |