Cargando…
Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans
Neuropeptides are secreted molecules that have conserved roles modulating many processes, including mood, reproduction, and feeding. Dysregulation of neuropeptide signaling is also implicated in neurological disorders such as epilepsy. However, much is unknown about the mechanisms regulating specifi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272019/ https://www.ncbi.nlm.nih.gov/pubmed/32497060 http://dx.doi.org/10.1371/journal.pone.0233991 |
_version_ | 1783542180448567296 |
---|---|
author | McCulloch, Katherine A. Zhou, Kingston Jin, Yishi |
author_facet | McCulloch, Katherine A. Zhou, Kingston Jin, Yishi |
author_sort | McCulloch, Katherine A. |
collection | PubMed |
description | Neuropeptides are secreted molecules that have conserved roles modulating many processes, including mood, reproduction, and feeding. Dysregulation of neuropeptide signaling is also implicated in neurological disorders such as epilepsy. However, much is unknown about the mechanisms regulating specific neuropeptides to mediate behavior. Here, we report that the expression levels of dozens of neuropeptides are up-regulated in response to circuit activity imbalance in C. elegans. acr-2 encodes a homolog of human nicotinic receptors, and functions in the cholinergic motoneurons. A hyperactive mutation, acr-2(gf), causes an activity imbalance in the motor circuit. We performed cell-type specific transcriptomic analysis and identified genes differentially expressed in acr-2(gf), compared to wild type. The most over-represented class of genes are neuropeptides, with insulin-like-peptides (ILPs) the most affected. Moreover, up-regulation of neuropeptides occurs in motoneurons, as well as sensory neurons. In particular, the induced expression of the ILP ins-29 occurs in the BAG neurons, which were previously shown to function in gas-sensing. We also show that this up-regulation of ins-29 in acr-2(gf) animals is activity-dependent. Our genetic and molecular analyses support cooperative effects for ILPs and other neuropeptides in promoting motor circuit activity in the acr-2(gf) background. Together, this data reveals that a major transcriptional response to motor circuit dysregulation is in up-regulation of multiple neuropeptides, and suggests that BAG sensory neurons can respond to intrinsic activity states to feedback on the motor circuit. |
format | Online Article Text |
id | pubmed-7272019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72720192020-06-12 Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans McCulloch, Katherine A. Zhou, Kingston Jin, Yishi PLoS One Research Article Neuropeptides are secreted molecules that have conserved roles modulating many processes, including mood, reproduction, and feeding. Dysregulation of neuropeptide signaling is also implicated in neurological disorders such as epilepsy. However, much is unknown about the mechanisms regulating specific neuropeptides to mediate behavior. Here, we report that the expression levels of dozens of neuropeptides are up-regulated in response to circuit activity imbalance in C. elegans. acr-2 encodes a homolog of human nicotinic receptors, and functions in the cholinergic motoneurons. A hyperactive mutation, acr-2(gf), causes an activity imbalance in the motor circuit. We performed cell-type specific transcriptomic analysis and identified genes differentially expressed in acr-2(gf), compared to wild type. The most over-represented class of genes are neuropeptides, with insulin-like-peptides (ILPs) the most affected. Moreover, up-regulation of neuropeptides occurs in motoneurons, as well as sensory neurons. In particular, the induced expression of the ILP ins-29 occurs in the BAG neurons, which were previously shown to function in gas-sensing. We also show that this up-regulation of ins-29 in acr-2(gf) animals is activity-dependent. Our genetic and molecular analyses support cooperative effects for ILPs and other neuropeptides in promoting motor circuit activity in the acr-2(gf) background. Together, this data reveals that a major transcriptional response to motor circuit dysregulation is in up-regulation of multiple neuropeptides, and suggests that BAG sensory neurons can respond to intrinsic activity states to feedback on the motor circuit. Public Library of Science 2020-06-04 /pmc/articles/PMC7272019/ /pubmed/32497060 http://dx.doi.org/10.1371/journal.pone.0233991 Text en © 2020 McCulloch et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article McCulloch, Katherine A. Zhou, Kingston Jin, Yishi Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title | Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title_full | Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title_fullStr | Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title_full_unstemmed | Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title_short | Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans |
title_sort | neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in c. elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272019/ https://www.ncbi.nlm.nih.gov/pubmed/32497060 http://dx.doi.org/10.1371/journal.pone.0233991 |
work_keys_str_mv | AT mccullochkatherinea neuronaltranscriptomeanalysesrevealnovelneuropeptidemodulatorsofexcitationandinhibitionimbalanceincelegans AT zhoukingston neuronaltranscriptomeanalysesrevealnovelneuropeptidemodulatorsofexcitationandinhibitionimbalanceincelegans AT jinyishi neuronaltranscriptomeanalysesrevealnovelneuropeptidemodulatorsofexcitationandinhibitionimbalanceincelegans |