Cargando…
Development and Validation of a Deep Learning Model for Non–Small Cell Lung Cancer Survival
IMPORTANCE: There is a lack of studies exploring the performance of a deep learning survival neural network in non–small cell lung cancer (NSCLC). OBJECTIVES: To compare the performances of DeepSurv, a deep learning survival neural network with a tumor, node, and metastasis staging system in the pre...
Autores principales: | She, Yunlang, Jin, Zhuochen, Wu, Junqi, Deng, Jiajun, Zhang, Lei, Su, Hang, Jiang, Gening, Liu, Haipeng, Xie, Dong, Cao, Nan, Ren, Yijiu, Chen, Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272121/ https://www.ncbi.nlm.nih.gov/pubmed/32492161 http://dx.doi.org/10.1001/jamanetworkopen.2020.5842 |
Ejemplares similares
-
A new method for predicting survival in stage I non-small cell lung cancer patients: nomogram based on macrophage immunoscore, TNM stage and lymphocyte-to-monocyte ratio
por: Gao, Jiani, et al.
Publicado: (2020) -
Is operation safe for lung cancer patients with interstitial lung disease on computed tomography?
por: Tang, Hai, et al.
Publicado: (2020) -
The detection value of PD-L1 expression in biopsy specimens and surgical resection specimens in non-small cell lung cancer: a meta-analysis
por: Wang, Yang, et al.
Publicado: (2021) -
Predicted outcomes of subdividing M1-stage metastatic lung cancer based on the prognosis and the response to local consolidative therapy
por: Wang, Fang, et al.
Publicado: (2021) -
Prognostic Analysis of Limited Resection Versus Lobectomy in Stage IA Small Cell Lung Cancer Patients Based on the Surveillance, Epidemiology, and End Results Registry Database
por: Gu, Chang, et al.
Publicado: (2018)