Cargando…

Development of cellulose-based conductive fabrics with electrical conductivity and flexibility

This study aimed to produce cellulose-based conductive fabrics with electrical conductivity and flexibility. Bacterial cellulose (BC) and three chemical cellulose (CC), namely methyl cellulose (MC), hydroxypropyl cellulose (HPMC) and carboxymethyl cellulose (CMC) were in situ polymerized with anilin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyunjin, Yi, Joon-Yeop, Kim, Byung-Gee, Song, Ji Eun, Jeong, Hee-Jin, Kim, Hye Rim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272206/
https://www.ncbi.nlm.nih.gov/pubmed/32498075
http://dx.doi.org/10.1371/journal.pone.0233952
Descripción
Sumario:This study aimed to produce cellulose-based conductive fabrics with electrical conductivity and flexibility. Bacterial cellulose (BC) and three chemical cellulose (CC), namely methyl cellulose (MC), hydroxypropyl cellulose (HPMC) and carboxymethyl cellulose (CMC) were in situ polymerized with aniline and the four conductive cellulose fabrics were compared and evaluated. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analysis confirmed that three CC-PANI composites displayed longer and more stable polymerization pattern than BC-PANI because of the different polymerization method: bulk polymerization for BC-PANI and emulsion polymerization for CC-PANI, respectively. The electrical conductivity of BC-PANI and CC-PANI were ranging from 0.962 × 10(−2) S/cm to 2.840 × 10(−2) S/cm. MC-PANI showed the highest electrical conductivity among the four conductive cellulose fabrics. The flexibility and crease recovery results showed that MC-PANI had the highest flexibility compared to BC-PANI, HPMC-PANI, and CMC-PANI. These results have confirmed that the electrical conductivity and flexibility were influenced by the type of cellulose, and MC-PANI was found to have the best performance in the electrical conductivity and flexibility.