Cargando…

Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance

PURPOSE: Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain significance (VUSs) identified through next-generation sequencing. Many such variants may disrupt normal RNA splicing. We examined effects on splicing of a large cohort of clinically identified variants and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wai, Htoo A., Lord, Jenny, Lyon, Matthew, Gunning, Adam, Kelly, Hugh, Cibin, Penelope, Seaby, Eleanor G., Spiers-Fitzgerald, Kerry, Lye, Jed, Ellard, Sian, Thomas, N. Simon, Bunyan, David J., Douglas, Andrew G. L., Baralle, Diana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272326/
https://www.ncbi.nlm.nih.gov/pubmed/32123317
http://dx.doi.org/10.1038/s41436-020-0766-9
Descripción
Sumario:PURPOSE: Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain significance (VUSs) identified through next-generation sequencing. Many such variants may disrupt normal RNA splicing. We examined effects on splicing of a large cohort of clinically identified variants and compared performance of bioinformatic splicing prediction tools commonly used in diagnostic laboratories. METHODS: Two hundred fifty-seven variants (coding and noncoding) were referred for analysis across three laboratories. Blood RNA samples underwent targeted reverse transcription polymerase chain reaction (RT-PCR) analysis with Sanger sequencing of PCR products and agarose gel electrophoresis. Seventeen samples also underwent transcriptome-wide RNA sequencing with targeted splicing analysis based on Sashimi plot visualization. Bioinformatic splicing predictions were obtained using Alamut, HSF 3.1, and SpliceAI software. RESULTS: Eighty-five variants (33%) were associated with abnormal splicing. The most frequent abnormality was upstream exon skipping (39/85 variants), which was most often associated with splice donor region variants. SpliceAI had greatest accuracy in predicting splicing abnormalities (0.91) and outperformed other tools in sensitivity and specificity. CONCLUSION: Splicing analysis of blood RNA identifies diagnostically important splicing abnormalities and clarifies functional effects of a significant proportion of VUSs. Bioinformatic predictions are improving but still make significant errors. RNA analysis should therefore be routinely considered in genetic disease diagnostics.